Книга: Число, пришедшее с холода. Когда математика становится приключением
Назад: Египетские дроби
Дальше: Самые большие числа математики

Быки бога солнца

Все же это горький жребий — быть греческим богом, особенно в одном из образов, нарисованных Гесиодом или Гомером в их фантастических повествованиях. Боги греков (и просвещенные греки времен Платона, естественно, это знали) были воплощением мерзости: прежде всего, неугомонный женолюб отец богов Зевс; преследующая его ревнивица Гера; рожденная из морской пены Афродита, кружившая головы как богам, так и простым смертным; рожденная из головы Зевса, вечно девственная и злобная Афина; мрачный бог подземного мира Аид и заключенная в его царстве теней, пребывающая в полном отчаянии Персефона. Все эти и множество других богов и полубогов суть плоды необузданной фантазии. Все они — не более чем выдумка. Выражаясь современным языком, Гомер и Гесиод на глазах просвещенных греков изобрели то, что сегодня называют мыльными операми: на Олимпе, на горе, где обитают боги, разыгрываются бесконечные интриги, трагедии и комедии, которым — как и в обычных мыльных операх — нет конца. Разница между людьми и богами, как мы слышим от находчивых поэтов, заключается лишь в том, что одни смертны, а другие — бессмертны.
Несмотря на это, Илиада и Одиссея, оба величайших произведения Гомера, стали источником вдохновения всех образованных греков. Дело в том, что за фасадом историй о любви, ненависти и измене скрывались глубокие истины, не говоря уже о красоте языка, великолепии напевных стихов и поэтическом воображении. Архимед, естественно, хорошо знал Одиссею и использовал один из ее очаровательных эпизодов для составления несравненной математической загадки.
После того как Одиссей и его спутники смогли миновать ужасы Сциллы и Харибды, приблизились они к хранимому Гелиосом, богом солнца, острову Сицилия, названному в поэме Тринакрией, будущей родине самого Архимеда. Сам Одиссей хотел проплыть мимо, но спутники уговорили его сделать остановку на райском острове, чтобы отдохнуть на нем несколько дней. Одиссей предупредил своих товарищей, чтобы они не ловили пасшихся на острове быков и коров, ибо то были священные животные, посвященные богу солнца Гелиосу. Однако, когда привезенные с собой запасы продовольствия подошли к концу, а погода не позволяла продолжить плавание, голодные спутники Одиссея пренебрегли его предостережением. Они поймали одну из коров и зарезали ее, чтобы прокормиться. Ничего хорошего из этого не вышло. Гелиос потребовал у верховного бога Зевса удовлетворения за святотатство. Едва Одиссей и его спутники покинули Сицилию, как на море разразился ужасный шторм. Зевс метнул в корабль молнию, и все члены команды, за исключением Одиссея, который не прикасался к мясу коровы Гелиоса и сумел привязать себя к мачте, пошли ко дну.
Архимед задал вопрос своему ученому другу: сколько, собственно говоря, коров и быков паслось тогда на благословенных лугах Сицилии?
В 1773 г. Готхольд Эфраим Лессинг, бывший тогда библиотекарем герцога Брауншвейгского в Вольфенбюттеле, нашел в рукописном отделе библиотеки копию письма, написанного Архимедом его другу и знакомому, александрийскому ученому Эратосфену. В письме содержалась записанная 44 двустишиями математическая загадка. В этом стихотворении Архимед задал все тот же вопрос: сколько скота было у бога Гелиоса на берегах Сицилии?
В качестве исходной информации Архимед сообщил Эратосфену соотношение между численностью белых, чёрных, рыжих и пёстрых животных, тщательно разделённых на коров и быков. Задача состояла из двух частей. Первая часть в сравнении со второй была довольно простой. Архимед мог предполагать, что его коллега Эратосфен вполне дорос до первой части задания. Для решения этой части задачи надо было владеть только четырьмя основными арифметическими действиями — но владеть безупречно, ибо вычисления были достаточно сложными. В случае, если Эратосфену удалось бы решить первую часть задачи, он бы узнал, что численность стада крупного рогатого скота Гелиоса была кратна 50 389 082 головам. Насколько велика общая численность, после решения первой части задачи оставалось неясным. При тех затруднениях, какие испытывали древние греки с названиями чисел, охватить такое большое число, как 50 389 082, было почти неразрешимой задачей. Вероятно, Архимед втайне радовался, представляя себе, как вымотается Эратосфен, решая первую часть присланной ему задачи.
Однако вторая часть еще более запутанна, чем первая. Если задания Архимеда были переведены верно, во второй части требуется для подсчета целочисленного кратного 50 389 082 вычислить еще два дополнительных числа. Из них и вытекает результат — насколько велико целочисленное кратное числа, полученного в первой части задачи. Оба этих дополнительных числа, по Архимеду, находятся в сложном соотношении друг с другом, и в этом соотношении большую роль играет невероятно гигантское число 410 286 423 278 424. Искусство Архимеда в задании условий задачи состояло в том, что он вышеназванное число порядка 410 триллионов не упомянул ни единым слогом, а лишь облек его в словесное поэтическое описание.
Вызывает восхищение уже одно то обстоятельство, что Архимед использовал неуклюжую греческую систему счисления и сумел при этом вычислить такое число, как 410 286 423 278 424. Но еще более удивительно то, что он — и это совершенно очевидно — знал, что вторая часть задачи, в принципе, имеет решение. В принципе — ибо никто не смог бы вычислить конечный результат, не прибегая к нашим современным вспомогательным техническим средствам. Слишком велики полученные результаты, слишком трудоемки соответствующие ручные вычисления. И сам Архимед не стал тратить силы на них. Для него было достаточно знания о том, что решение существует. Еще лучше Архимед осознавал непреложный факт: решая вторую часть задачи, Эратосфен неминуемо должен будет признать свое ужасное поражение. Но он, Архимед, был единственным, кто наверняка знал, что решение существует. Никто не сможет превзойти его в знании математики, даже следующий за ним по пятам Эратосфен.
Только в 1965 г. Хью Вильямс, Гас Герман и Боб Царнке с помощью лучших на то время вычислительных машин IBM 7040 и IBM 1620, затратив на вычисления почти восемь часов, смогли рассчитать численность стада Гелиоса, разгадать загадку Архимеда и получить результат, воистину достойный бога. У Гелиоса было больше 7,76 × 10206545 голов крупного рогатого скота — это число, начинающееся с 776 и состоящее из 206 546 разрядов!
В сравнении с этим числом число атомов во Вселенной можно считать ничтожно малым. И такого гениального человека одним взмахом меча убил какой-то жалкий варвар. «O quam cito transit gloria mundi!» — «О, как скоро проходит мирская слава!» — по праву сетует Фома Кемпийский, великий нидерландский мистик позднего Средневековья.
Назад: Египетские дроби
Дальше: Самые большие числа математики