Эврика: есть на свете кое-что, чего компьютеры не умеют!
Каспаров предлагает важный ключ к ответу на этот вопрос, описывая свой матч с болгарином Веселином Топаловым. Оба гроссмейстера в ходе матча могли беспрепятственно консультироваться с компьютером. По его собственным словам, Каспаров знал, что «поскольку у нас имелся один и тот же доступ к одной и той же базе данных, для получения преимущества в конечном итоге все равно требовалась какая-то новая идея». Итак, эта «идея о новой идее» снова и снова всплывает в наших рассуждениях о том, чем еще пока не может заниматься компьютер.
До сих пор нам еще не приходилось видеть по-настоящему творческие компьютеры, предприимчивые компьютеры, компьютеры-изобретатели. Мы знаем программы, способные выдавать рифмованные строки текста, но ни одна из них не способна создать настоящее стихотворение («спонтанный поток мощных чувств», словами Вордсворта). Программы, умеющие писать ясные прозаические тексты на заданную тему, – это уже огромное достижение, но мы пока еще не видели программы, которая могла бы самостоятельно продолжить сюжет и знала бы, о чем писать дальше. Не встречался нам и софт, который умел бы создавать другой хороший софт; во всяком случае, до сих пор все попытки в этом направлении заканчивались неудачей.
Для всех этих видов деятельности требуется нечто общее – идеация (ideation), то есть способность порождать новые понятия, идеи или концепции и оперировать ими. Точнее, речь здесь идет о хороших новых идеях или концепциях, поскольку компьютеры можно легко запрограммировать так, чтобы они создавали новые комбинации уже существующих элементов, таких, например, как слова. Но это нельзя ни в коей мере считать рекомбинационной инновацией. Скорее это ближе к цифровому эквиваленту гипотетической комнаты, в которой множество обезьянок случайным образом стучат на множестве пишущих машинок в течение миллиона лет – и все же никак не могут повторить ни одной пьесы Шекспира.
Идеация во множестве своих форм – это область, в которой у людей и по сей день имеется преимущество перед машинами. Ученый создает новую гипотезу. Журналист раскапывает факты для хорошей истории. Шеф-повар добавляет новое блюдо в меню. Инженер в фабричном цеху выясняет, почему станок не работает как надо. Стив Джобс и его коллеги из Apple пытаются понять, какой именно планшетный компьютер мы на самом деле хотим. Многие из этих видов ментальной деятельности можно поддержать и ускорить с помощью компьютеров, однако ни одним когнитивным процессом не может управлять машина.
Слова Пикассо, приведенные в начале этой главы, – шутка лишь наполовину. Компьютеры не бесполезны, но это и в самом деле пока еще машины для создания ответов, а не постановки новых интересных вопросов. Судя по всему, на второе по-прежнему способы только люди, и эта способность остается абсолютно ценной. Мы готовы поручиться, что люди, умеющие порождать идеи, будут и дальше иметь сравнительное преимущество перед машинами. Такие люди останутся востребованными. Иными словами, мы убеждены, что работодатели в наши дни и в обозримом будущем станут в поисках талантов следовать совету Вольтера, гения эпохи Просвещения: «Суди о человеке больше по его вопросам, чем по его ответам».
Идеация, творческое воображение и изобретательность часто объединяются выражением «нешаблонное мышление» – и эта характеристика определяет еще одно значительное и довольно устойчивое преимущество человеческого труда перед цифровым. Компьютеры и роботы остаются довольно беспомощными за пределами запрограммированных рамок. Суперкомпьютер Watson умеет отлично побеждать в «Своей игре», но в «Колесе фортуны» или другом телевизионном игровом шоу его смог бы побить любой ребенок – если только машину заранее не перепрограммируют ее создатели-люди. Самостоятельно Watson с этим не справится.
Однако вместо того чтобы выигрывать в других телешоу, команда IBM, совершенствующая компьютер Watson, обратилась к другим областям, например к медицине (о чем мы уже говорили выше). Но и здесь будут сохраняться определенные рамки. Хотим уточнить: мы верим в способность Watson стать отличным врачом. И хотя сейчас диагностика находится полностью в руках людей-специалистов, мы не сомневаемся, что Watson, которому уже удалось обыграть Кена Дженнингса, Брэда Раттера и всех остальных звезд «Своей игры», сможет оставить позади и «Доктора Кто», и «Доктора Хауса», и множество реальных врачей-диагностов в игре на их собственном поле.
Компьютер, умеющий делать заключения на основе заранее определенных правил и сравнения с примерами, заложенными в базу данных, способен помочь диагносту во множестве случаев. Но люди-диагносты сохранят свою ценность даже после того, как этот «доктор Ватсон» завершит свое медицинское обучение, поскольку хороший диагност способен учесть множество мелких вариаций и особых случаев, которые всегда неизбежны. Гораздо труднее построить полностью автоматический автомобиль, чем такой, который просто может самостоятельно ехать по автостраде при нормальных условиях. Точно так же создать компьютерную систему, которая сможет решить любые медицинские проблемы, принципиально сложнее, чем создать машину для самых распространенных ситуаций. Как и в случае с шахматами, партнерство «доктора Ватсона» и человека-врача может оказаться намного более креативным и надежным, чем работа каждого из них поодиночке. Выражаясь словами футуролога Кевина Келли, «в будущем размер вашей зарплаты будет зависеть от того, насколько хорошо вы ладите с роботами».