Книга: Принцип апокалипсиса: сценарии конца света
Назад: Бог как иллюзия
Дальше: Примечания

Словарь

Абсолютный ноль – самая низкая возможная температура, при которой вещество не содержит тепловой энергии.
Аккреция – падение рассеянного вещества на поверхность космического тела под действием ее притяжения. Например, притяжение звезды может вызвать аккрецию межзвездного вещества или газа из верхних слоев атмосферы соседней звезды из двойной системы. У нормальных звезд аккреции межзвездного вещества обычно препятствует их излучение. Но у компактных белых карликов, нейтронных и застывших звезд коллапсаров препятствий для аккреции почти нет, и она происходит очень активно. На массивные черные дыры в ядрах галактик происходит аккреция межзвездного газа, вещества разрушенных звезд и, вероятно, даже целых звезд, если плотность их вещества достаточно высока. Как правило, при аккреции значительная доля гравитационной энергии падающего вещества выделяется в виде излучения при ударе о поверхность звезды или в результате взаимного трения в аккреционном диске.
Антиматерия – материя, состоящая из античастиц. Ядра атомов антивещества состоят из антинуклонов, а внешняя оболочка – из позитронов. Возможность существования антивещества следует из полной симметричности законов природы относительно ядерного взаимодействия между антинуклонами и нуклонами, что обеспечивает существование антиядер. Антиядра обладают массой и энергетическим спектром такими же, как у ядер, состоящих из соответствующих нуклонов. Электромагнитное взаимодействие позитронов и ядер антивещества должно приводить к образованию атомов антивещества, причем атомы антивещества и вещества должны иметь идентичную структуру. Столкновение объекта, состоящего из вещества, с объектом из антивещества приводит к аннигиляции входящих в их состав частиц и античастиц. Аннигиляция медленных электронов и позитронов ведет к образованию гамма-квантов, а аннигиляция медленных нуклонов и антинуклонов – к образованию нескольких мезонов. В природе атомы антивещества пока не обнаружены.
Античастица – каждому типу частиц соответствуют свои античастицы, характеризуемые противоположными зарядами. Когда частица сталкивается с античастицей, они аннигилируют, оставляя только энергию.
Атом (от греч. «неделимый») – наименьшая возможная частица любого из простейших химических веществ, называемых элементами. Понятие атома, как и само слово, – древнегреческого происхождения, но только в XX в. истинность атомной гипотезы была твердо установлена. Основная идея, остававшаяся привлекательной для научного и поэтического воображения во все века, состоит в том, что за непрерывными изменениями наблюдаемого мира кроется некий неизменный мир. Этот мир прост, ибо каждый из атомов в точности тождествен всем остальным атомам того же рода, обладает сравнительно простой структурой и существовал от начала времен. Эти идеи с некоторыми оговорками можно рассматривать как концентрированное выражение самой сути даже абстрактной и изощренной современной теории. Подобно самим атомам, они являются наиболее стойкими из всех идей античной науки. Атом состоит из крошечного ядра (сложенного из протонов и нейтронов), окруженного обращающимися вокруг него электронами.
Атоллное ядро – центральная часть атома, в которой сосредоточена основная его масса и структура которого определяет химический элемент, к которому относится атом. Размеры ядер различных атомов составляют от одного фемтометра, что в 100 тысяч раз меньше размеров самого атома. Масса ядер примерно в 4000 раз больше массы входящих в атом электронов и сильно зависит от количества входящих в него частиц и энергии их связи. Атомные ядра изучает ядерная физика. Атомное ядро состоит из нуклонов – положительно заряженных протонов – и нейтральных нейтронов, которые связаны между собой при помощи внутриядерного сильного взаимодействия. Атомное ядро, рассматриваемое как класс частиц с определенным числом протонов и нейтронов, часто называется нуклидом. Количество протонов в ядре называется его зарядовым числом Z – это число равно порядковому номеру элемента, к которому относится атом в таблице Менделеева. Количество протонов в ядре полностью определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N. Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом А (очевидно А = N + Z) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Как и любая квантовая система, ядра могут находиться в метастабильном возбужденном состоянии, причем в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбужденные состояния ядер называются ядерными изомерами.
Большой взрыв – космологический сценарий, по которому все вещество Вселенной в самом начале находилось в точке сингулярности микроскопических размеров со сверхвысокой плотностью и температурой. Известные физические законы начали действовать, начиная с размеров атомного ядра. В первую секунду образовались фундаментальные частицы вещества: кварки, антикварки и фотоны электромагнитного излучения. Затем из них образовались протоны, антипротоны и нейтроны. Между частицами и античастицами началась аннигиляция, заполнив Вселенную излучением. К исходу первой секунды температура упала до десяти миллиардов градусов, образовались другие элементарные частицы, и обычное вещество окончательно стало преобладать над антиматерией. К третьей минуте из четверти всех протонов и нейтронов образовались ядра гелия. Через несколько сотен тысяч лет расширяющаяся Вселенная остыла настолько, что ядра гелия и протоны смогли удерживать возле себя электроны, образуя атомы водорода и гелия. Вселенная наполнилась микроволновым излучением, которое сейчас фиксируется как реликтовое с температурой 3 К. Это излучение служит главным аргументом теории Большого взрыва.
Большой разрыв – гипотеза о судьбе Вселенной, предсказывающая развал (разрыв) всей материи за конечное время. Справедливость этой гипотезы сильно зависит от природы темной энергии, а именно от отношения давления темной энергии к ее плотности. Если оно меньше -1, то Вселенная будет ускоренно расширяться, и величина масштабного фактора станет равной бесконечности за конечное время. Если гипотеза Большого разрыва верна, то, по мере увеличения скорости расширения, расстояние до горизонта событий, т. е. той части Вселенной, которая удаляется от наблюдателя со скоростью света, будет уменьшаться. Все, что находится за горизонтом, недоступно наблюдению, поэтому объекты, расположенные в центре наблюдаемой вселенной, не взаимодействуют ни с чем, находящимся за горизонтом. Если размер горизонта событий становится меньше размеров какого-либо объекта, то между частями этого объекта невозможны никакие взаимодействия – ни гравитационное, ни электромагнитное, ни сильное или слабое.
Большой хлопок – гипотетический конец эволюции Вселенной в результате космологического гравитационного коллапса с переходом материи в сингулярное состояние.
Белый карлик – маленькая звезда, размером с Землю, но при этом весьма массивная (как Солнце) и поэтому очень плотная: в миллион раз плотнее воды. При такой огромной плотности вещество звезды переходит в особое состояние, называемое вырожденным газом. Белые карлики происходят из сжавшихся остывающих ядер нормальных звезд, на заключительном этапе эволюции сбросивших с себя оболочку. В отличие от обычных звезд, в белом карлике не идут термоядерные реакции, и он светится исключительно за счет остывания.
Виртуальная частица – в квантовой механике частица, которую невозможно обнаружить непосредственно, но чье существование порождает измеримые эффекты. Как некоторый абстрактный объект в квантовой теории, обладает некоторыми параметрами (квантовыми числами) реальных элементарных частиц (с массой т), но для него, однако, не выполняется обычная связь между энергией и импульсом (т. е. E2 = m2c2 + p2c2). Виртуальные частицы не могут «улететь в бесконечность»; они рождаются и будут непременно поглощены какой-либо частицей.
Виртуальность – особый параметр для мнимых частиц, насыщающих физический вакуум; характеризуется релятивистски-инвариантной величиной Q2 = Е2 – р2с2 – m2c4, причем Q2 может быть как положительной, так и отрицательной величиной. Область значений Е и р, при которых виртуальность равна нулю, называется массовой поверхностью, или массовой оболочкой частицы.
Гамма-излучение – электромагнитное излучение с очень малой длиной волны, порождаемое радиоактивным распадом и столкновениями элементарных частиц.
Гравитационное красное смещение – смещение положений линий спектра электромагнитного излучения, испущенного с поверхности компактного массивного объекта; составляет: z = GM / (Rc2), где М и R – масса и радиус тела, G – гравитационная константа.
Гравитационный радиус (горизонт событий) – граница черной дыры. Черные дыры были предсказаны как объекты, у которых вторая космическая скорость больше или равна скорости света, т. е. в ньютоновской теории объект, имеющий начальную скорость, равную скорости света, поверхность которого ничто не может покинуть. Из этого простого условия легко получить характерный т. н. гравитационный радиус: R(g) = 2GM/c2. К примеру, для массы Солнца, 2×1030 кг, получаем оценку гравитационного радиуса порядка трех километров. На самом деле, в Ньютоновской теории такой результат может быть получен только формально, так как в ней могут существовать движения со скоростями выше скорости света. Реально черные дыры были предсказаны в общей теории относительности Эйнштейна, однако формула для гравитационного радиуса в обеих теориях оказалась одной и той же. Как видно из формулы, черную дыру можно получить или сильно сжав объект при неизменной массе (например, наше Солнце – до 3 км), или существенно увеличив его массу при постоянном радиусе. «Звездные» черные дыры образуются путем сжатия, когда массивная звезда, исчерпав источники энергии, падает «сама в себя». Давление не может противодействовать силам гравитации, и они схлопывают звезду, исчерпавшую источники энергии.
Квантовая механика – теория на основании квантового принципа Планка и представления о том, что свет (или любые другие классические волны) может испускаться и поглощаться только дискретными порциями (квантами), энергия которых пропорциональна длине волны. Устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.
Квантовая гравитация – квантовая механика и гравитационная теория в рамках общей теории относительности очень плохо стыкуются между собой. С практической точки зрения нам в повседневной жизни квантовая теория гравитационного взаимодействия, по большому счету, не нужна, поскольку все явления, с которыми мы прямо или косвенно сталкиваемся, описываются либо гравитационными эффектами, на фоне которых квантово-механические эффекты никак не проявляются, либо наоборот. С другой стороны, если нас интересует происхождение Вселенной и процессы, происходившие в первые мгновения после Большого взрыва, универсальная
и непротиворечивая теория нам все-таки нужна. В самом начале квантово-механические и гравитационные взаимодействия были в равной мере значимы. Именно это и послужило одним из главных стимулов к разработке квантовой теории гравитации. Такой теорией стала теория струн. В ее рамках удалось, наконец, объединить квантовомеханические и гравитационные взаимодействия. Мы не знаем, верна ли эта теория, но лучшей кандидатуры на роль универсальной теории на сегодня не существует.
Кварки – фундаментальные (неделимые и бесструктурные сточки зрения современной физики) компоненты материи с дробным электрическим зарядом. Имеют по шесть различных разновидностей, или «ароматов»: «верхний», «нижний», «странный», «очарованный», «красивый» и «истинный»; обычно объединяются в пары или тройки, формируя другие элементарные частицы. Кварки скрепляются между собой за счет ядерных сил – сильных взаимодействий, переносчиками которых являются другие частицы – глюоны.
Кварковая звезда – гипотетическое тело, состоящее из так называемой «кварковой материи». Считается, что такие звезды занимают промежуточное место между нейтронными звездами и черными дырами. Кварковые звезды могут оказаться настолько плотными, что излученный ими свет может двигаться по орбите вокруг такой звезды. Кроме того, пока не ясно, является ли переход вещества в кварковое состояние обратимым в нейтронную материю при уменьшении давления. Как показывает моделирование, в «кварковом газе», из которого, предположительно, состоит звезда, должно присутствовать большое количество «странных» s-кварков, поэтому иногда кварковые звезды называют еще и «странными».
Керровская черная дыра – вращающийся коллапсар. Если исходное тело вращалось, то вокруг черной дыры сохраняется «вихревое» гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 году нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее; по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.
Космогония – наука, изучающая происхождение и развитие космических тел. В космогонические системы входят сценарии эволюции звезд, галактик, туманностей, Солнечной системы, включая все входящие в нее небесные тела: Солнце, планеты, их спутники, астероиды, кометы, метеориты. Изучение космогонических процессов является одной из главных задач астрофизики. В современной космогонии широко используются законы физики и химии. Космогонические гипотезы прошлых веков относились главным образом к происхождению Солнечной системы. Лишь в двадцатом веке развитие наблюдательной и теоретической астрофизики позволило начать серьезное изучение эволюции звезд и звездных систем.
Космологическая постоянная – математический параметр, введенный Эйнштейном, чтобы уравнения общей теории относительности допускали пространственно однородные статические решения. После построения теории эволюционирующей космологической модели Фридмана и получения подтверждающих ее наблюдений, отсутствие такого решения у исходных уравнений Эйнштейна не рассматривается как недостаток теории. До самого конца прошлого века достоверных указаний на отличие космологической постоянной от нуля не было, поэтому она рассматривалась в общей теории относительности как необязательная величина. После открытия ускоренного расширения Вселенной наличие космологической постоянной определяет вид наиболее распространенных космологических моделей и сценариев их эволюции.
Космологическое (метагалактическое) красное смещение – наблюдаемое для всех далеких источников звезд, квазаров и галактик понижение частот излучения, свидетельствующее о динамическом удалении этих источников друг от друга и, в частности, от нашей галактики, то есть о расширении метагалактики.
Космология – раздел астрономии, изучающий Вселенную как целое, в том числе происхождение, крупномасштабную структуру и эволюцию метагалактики. Данные для космологии в основном получают из астрономических наблюдений. Для их интерпретации в настоящее время используется общая теория относительности Эйнштейна. Создание этой теории и проведение соответствующих наблюдений позволило в начале прошлого века поставить космологию в ряд точных наук, тогда как до этого она, скорее, была областью философии. Сейчас сложились две космологические школы: эмпирики ограничиваются интерпретацией наблюдательных данных, не экстраполируя свои модели в неизученные области; теоретики пытаются объяснить наблюдаемую Вселенную, используя некоторые гипотезы, отобранные по принципу простоты и структурированности. Широко признана космологическая модель Большого взрыва, согласно которой расширение Вселенной началось около четырнадцати миллиардов тому назад из очень плотного и горячего состояния; малопопулярна, но продолжает обсуждаться стационарная модель Вселенной, в которой она существует вечно и не имеет ни начала, ни конца.
Красное смещение – покраснение света удаляющихся от нас небесных тел, которое обусловлено эффектом сдвига положения спектральных линий химических элементов в красную длинноволновую сторону. Является проявлением эффекта Доплера в видимом электромагнитном диапазоне. Каждый химический элемент поглощает или излучает электромагнитные волны на строго определенных частотах. Поэтому каждый химический элемент образует в спектре неповторимую картину из линий излучения. В результате движения частота излучения от удаленных объектов, например звезд, может изменяться (понижаться или повышаться), а линии, соответственно, могут смещаться в красную (длинноволновую) или синюю (коротковолновую) часть спектра, сохраняя, однако, свое неповторимое относительное расположение. Чаще всего термин «красное смещение» используют для обозначения двух явлений: «гравитационное красное смещение» и «космологическое красное смещение».
Кротовая нора (кротовина, червоточина, мостик, туннель) – гипотетическая топологическая особенность пространства-времени, представляющая собой в каждый момент времени туннель в пространстве. Область вблизи самого узкого участка кротовины называется горловиной. Кротовые норы делятся на «внутримировые» и «межмировые» в зависимости от того, можно ли соединить входы кривой, не пересекающей горловину. Различают также проходимые и непроходимые кротовины. К последним относятся те туннели, которые коллапсируют слишком быстро для того, чтобы наблюдатель или световой сигнал успели добраться от одного входа до другого. Классический пример непроходимой кротовины – пространство Шварцшильда, а проходимой – кротовины Морриса – Торна. Теория относительности допускает существование таких туннелей, но для существования проходимой кротовой норы необходимо, чтобы она была заполнена экзотической антигравитирующей субстанцией, создающей сильное гравитационное отталкивание и препятствующей схлопыванию норы. Решения типа кротовых нор возникают в различных вариантах теории квантовой гравитации, хотя полностью данные вопросы еще не исследованы. Проходимая внутримировая кротовая нора дает гипотетическую возможность путешествий во времени, если, например, один из ее входов движется относительно другого или если он находится в сильном гравитационном поле, где течение времени замедляется.
Лептоны – группа элементарных частиц, обладающих только слабыми, и, при наличии электрического заряда, электромагнитными взаимодействиями, но не обладающая, в отличие от адронов, сильными взаимодействиями. Все лептоны обладают полуцелым спином, являясь фермионами. К их числу принадлежат: электрон, электронное нейтрино, мюон, мюонное нейтрино и их античастицы.
Магнитное поле – поле, ответственное за магнитные силы. В электродинамике рассматривается совместно с электрическим полем как проявление единого электромагнитного поля.
Масса – количество материи в физическом теле; его инерция, или сопротивление ускорению.
Межзвездный газ – разреженная газовая среда, заполняющая все пространство между звездами. Химический состав межзвездного газа примерно такой же, как и у большинства звезд: он состоит из 90 % водорода и 10 % гелия с небольшой примесью более тяжелых элементов. В зависимости от температуры и плотности межзвездный газ пребывает в молекулярном, атомарном или ионизованном состояниях. Наблюдаются холодные молекулярные облака, разреженный межоблачный газ, облака ионизованного водорода и обширные области разреженного и очень горячего газа с температурой около миллиона градусов Кельвина.
Микроволновое фоновое излучение – излучение, оставшееся от горячей ранней Вселенной и испытавшее к настоящему времени столь сильное красное смещение, что из света превратилось в микроволны (радиоволны с длиной волны несколько сантиметров).
Млечный Путь – светлая неровная полоса, опоясывающая небо по большому кругу. Она связана со свечением огромного количества слабых звезд, большинство которых неразличимо по отдельности ни в какие телескопы. Таким нам представляется звездный диск нашей галактики, который мы наблюдаем изнутри, находясь вблизи плоскости диска. В Млечном Пути концентрируется межзвездный газ, межзвездная пыль и группировки молодых звезд. Часто термин Млечный Путь используется как название всей нашей галактики.
Мультиверс (мультиуниверсум, мультивселенная, мультимир) – космологическая концепция, предполагающая, что наше мироздание включает или входит во множество миров и вселенных.
Нейтрино – чрезвычайно легкая частица, которая подвержена действию только слабых сил и гравитации.
Нейтрон – нейтральная элементарная частица, вместе с протонами составляющая атомные ядра. Нейтроны очень похожи на протоны и составляют около половины частиц атомного ядра.
Нейтронная звезда – небесное тело, в основном состоящее из нейтронов. Гипотезу о существовании нейтронных звезд выдвинули астрономы Вальтер Бааде и Фриц Цвикки сразу после открытия нейтрона в 1932 году, ее подтвердили открытие и последующие наблюдения пульсаров в 1967 году. Нейтронные звезды образуются в результате гравитационного коллапса ядер нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, поэтому при своей огромной массе нейтронная звезда имеет радиус всего лишь в десятки километров.
Новая звезда – звезда, увеличивающая свой блеск в тысячи (иногда – в миллионы) раз за несколько часов, а затем в течение нескольких недель тускнеющая и возвращающаяся к своему исходному блеску. Название новая отражает старинное представление о том, что на небе в этот момент возникает не существовавшая ранее звезда. В действительности явление новой связано со звездами большого возраста, практически закончившими свою эволюцию. Оно возникает в тесных двойных системах, где один из компонентов является вырожденной звездой белого карлика или нейтронной звездой. На определенном этапе эволюции таких систем вещество второго компонента – нормальной звезды – может начать перетекать на соседнюю вырожденную звезду. Когда на поверхности белого карлика или в магнитосфере нейтронной звезды накапливается критическая масса вещества, происходит термоядерный взрыв, срывающий со звезды оболочку и увеличивающий ее светимость в тысячи раз. По мере накопления очередной порции газа взрыв повторяется, образуя повторные новые.
Общая теория относительности (ОТО) – теория Эйнштейна, основанная на идее, что законы физики должны быть одинаковыми для всех наблюдателей, независимо от того, как они движутся. В основе ОТО лежит экспериментальный факт равенства инертной массы (входящей в законы механического движения Ньютона) и гравитационной массы (входящей в закон тяготения Ньютона) для любого тела. Это равенство проявляется в том, что движение тела в поле тяготения не зависит от его массы. Следствием этого является отсутствие гравитационно-нейтральных тел. Иными словами, гравитационное поле (в котором проявляется гравитационная масса) эквивалентно ускоренному движению (в котором проявляется инертная масса). Гравитационная масса и инертная масса характеризуют одно и то же свойство материи, рассматриваемое по-разному (разность массы современными экспериментальными методами не обнаружена). Таким образом, Эйнштейн пришел к принципу эквивалентности: «В поле тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения, если в нем вместо „инерциальной" системы отсчета ввести систему, ускоренную относительно нее». Данный принцип позволяет трактовать гравитационное взаимодействие в терминах искривления четырехмерного пространства-времени.
Плазма – газ, атомы которого частично или полностью ионизированы. В состоянии плазмы находится основное количество газа во Вселенной, поскольку из плазмы состоят звезды и значительная часть межзвездной среды. Важной особенностью плазмы является ее способность проводить электрический ток. Это приводит к тому, что характер движения плазмы зависит от значения индукции и формы линий индукции магнитного поля, в котором находится газ. Свойства намагниченной плазмы определяют многие наблюдаемые особенности различных астрономических объектов – от формы облаков межзвездного газа до возникновения вспышек на Солнце.
Планетарная туманность – светлая туманность вокруг старой звезды, образованная верхними истекающими слоями ее атмосферы; обычно это оболочка, сброшенная звездой-гигантом. Туманность расширяется и светится в оптическом диапазоне, поскольку ее газ нагрет (Т ~ 10000 К) и возбужден ультрафиолетовым излучением горячего ядра центральной звезды. Первые планетарные туманности были открыты В. Гершелем около 1783 года и названы так за их внешнее сходство с дисками планет. Однако далеко не все планетарные туманности имеют форму диска: многие имеют форму кольца или симметрично вытянуты вдоль некоторого направления (биполярные туманности). Внутри них заметна тонкая структура в виде струй, спиралей, мелких глобул. Скорость расширения планетарных туманностей – 20–40 км/с, типичная масса – около 0,1 массы Солнца, время жизни – около 10 тысяч лет. Невооруженным глазом планетарные туманности не видны. Наиболее близкая планетарная туманность, называемая «Улитка», находится в созвездии Водолея.
Позитрон – положительно заряженная античастица электрона.
Поле – материальная сущность, распределенная в пространстве и времени, в противоположность частице, которая существует только в одной точке в каждый момент времени.
Пространство-время – физическая модель, дополняющая пространство временным измерением и, таким образом, создающая новую теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. В соответствии с теорией относительности Вселенная имеет три пространственных измерения и одно временное измерение. В классической механике пространство и время объединены искусственно, как прямое взаимное произведение, однако в реальности они независимы друг от друга. В контексте теории относительности время неотделимо от трех пространственных измерений и зависит от скорости наблюдателя. Количество измерений, необходимых для описания пространства-времени нашей Вселенной, окончательно не определено. Предполагается, что в ней присутствуют дополнительные (ненаблюдаемые) измерения, свернутые до сверхмикроскопических размеров, так что экспериментально они пока не могут быть обнаружены. Первый вариант модели естественного объединения пространства и времени был создан Германом Минковским (пространство Минковского) на основе теории относительности.
Протон – положительно заряженная частица, очень похожая на нейтрон. В большинстве атомов протоны составляют около половины всех частиц в ядре.
Радиоактивность – случайный (спонтанный) распад атомного ядра, превращающий его в ядро другого типа.
Радиоастрономия – раздел астрономии, занимающийся исследованием космического радиоизлучения. Возник с появлением первых радиотелескопов – телескопов, используемых для приема радиоизлучения из космоса. Основными элементами являются: антенна, чувствительный радиоприемник, перестраиваемый по частоте, который называют радиометром, и регистрирующая аппаратура. Для улучшения разрешающей способности радиотелескопы обычно объединяют в радиоинтерферометры.
Радиогалактика – галактика, отличающаяся необычно сильным радиоизлучением. Обычно это крупные массивные галактики с плотной центральной областью – ядром. У наиболее мощных радиогалактик светимость в радиодиапазоне превышает оптическую светимость. Радиоисточники, связанные с радиогалактиками, обычно состоят из отдельных компонентов (ядро, радиогало, радиовыбросы, называемые также радиоджетами). Механизм их радиоизлучения связан с движением в магнитном поле энергичных электронов, выброшенных из активного ядра галактики. Ближайшие радиогалактики – Центавр A (NGC 5128) в созвездии Центавра и галактика Дева А (NGC 4486) в центре скопления галактик в созвездии Девы.
Световая секунда (световой год) – расстояние, проходимое светом за одну секунду (один год).
Сингулярность – точка в пространстве-времени, где искривление пространства-времени (или некая другая физическая величина) достигает бесконечного значения. В случае гравитационной сингулярности все вещество небесного тела под действием сил тяготения устремляется к ее центру, образуя черную дыру коллапсара с сингулярностью в центре. Такая сингулярность связана с плотностью материи, стремящейся к бесконечности.
Солнце – центральная одиночная звезда нашей Солнечной системы, вокруг которой обращаются все другие объекты: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеориты, кометы и космическая пыль. Масса Солнца составляет 99,8 % от суммарной массы всей Солнечной системы. Солнечное излучение поддерживает жизнь на поверхности Земли, участвуя в фотосинтезе, и влияет на земную погоду и климат. Солнце состоит из 74 % водорода, 25 % гелия и незначительных концентраций других элементов. Солнце относится к типу G2V (желтый карлик). Температура поверхности Солнца достигает 5780 градусов Кельвина, поэтому Солнце светит ровным белым светом, но из-за поглощения атмосферой Земли цвет нашего светила имеет желтый оттенок днем и красноватый при рассвете и закате.
Спектр – совокупность частот, составляющих волны какого-либо излучения, в частности, электромагнитного. Видимую часть солнечного спектра можно наблюдать в радуге.
Специальная (частная) теория относительности (СТО) – теория Эйнштейна, основанная на идее, что законы физики должны быть одинаковыми для всех наблюдателей, независимо от того, как они движутся при отсутствии гравитационных явлений. СТО является современной теорией пространства и времени, в наиболее общем виде устанавливая связь между событиями в пространстве-времени и определяя форму записи физических законов, не меняющуюся при переходе от одной инерциальной системы отсчета к другой. Ключевым в теории является новое понимание понятия одновременности событий, основанное на постулате о существовании максимальной скорости распространения сигналов – скорости света в вакууме. СТО обобщает представления классической механики Галилея – Ньютона на случай движения тел со скоростями, близкими к скорости света.
Темная материя и энергия – материя в галактиках, их скоплениях и, возможно, между скоплениями, которая не может наблюдаться непосредственно, но может быть обнаружена по ее гравитационному притяжению, составляя до 90 % массы Вселенной. Темная энергия пока еще является гипотетической формой некого поля, оказывающего отрицательное гравитационное давление и равномерно заполняющего всю метагалактику. Согласно теории относительности гравитация зависит не только от массы, но и от давления, причем отрицательное давление должно порождать антигравитационное отталкивание. Это, в общем, соответствует недавно обнаруженному ускоренному расширению Вселенной, где такая сила действительно действует в метагалактических масштабах. Темная энергия также должна составлять значительную часть скрытой массы метагалактики. Существует несколько вариантов объяснения сущности темной энергии, среди которых выделяются два. Согласно первому, темная энергия связана с космологической константой Эйнштейна как неизменная энергетическая плотность, равномерно заполняющая пространство. Согласно второму – темная энергия есть некая «квинтэссенция» в виде динамического поля, энергетическая плотность которого может меняться в пространстве и времени.
Термоядерный синтез – реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез – это реакция, обратная делению атомов: при делении энергия выделяется за счет расщепления тяжелых ядер на более легкие. Выделение энергии при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на внутриядерных расстояниях и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга. В нормальных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы, преодолев электростатическое отталкивание, они могли сблизиться и вступить в ядерную реакцию. Однако отталкивание можно преодолеть сильным внешним воздействием, например, сталкивая ядра, обладающие высокой относительной скоростью. Согласно современным астрофизическим представлениям основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез, однако существуют серьезные сомнения относительно того, что он протекает так же, как в земных условиях при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным выделением энергии на единицу массы реагирующих веществ – в десятки миллионов раз большим, чем в химических реакциях.
Ускоритель элементарных частиц – установка, способная ускорять движущиеся заряженные частицы, передавая им энергию при помощи электромагнитов. Существует несколько типов ускорителей, например: синхрофазотроны, циклотроны, бетатроны, коллайдеры.
Фотон – световой квант электромагнитного излучения.
Черная дыра (гравитационный коллапсар, застывшая звезда, замерзшая звезда) – область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют «горизонтом событий», или просто «горизонтом» черной дыры. Чтобы поле тяготения смогло «запереть» излучение, создающая это поле масса должна сжаться до объема, меньшего чем «гравитационный радиус». Значение гравитационного радиуса чрезвычайно мало по сравнению с обычными размерами небесных тел. Можно определить черную дыру, как область пространства-времени, из которой невозможно никакое сообщение с внешней по отношению к ней Вселенной. У черной дыры нет поверхности как таковой, но есть граница, напоминающая мембрану, называемая «горизонт событий». Для не вращающейся незаряженной черной дыры размер горизонта и определяется написанной выше формулой для гравитационного радиуса. После коллапса звезды в черную дыру ее свойства будут зависеть только от двух параметров: массы и углового момента вращения. Черные дыры представляют собой универсальные объекты, то есть их свойства не зависят от свойств вещества, из которого они образованы. При любом химическом составе вещества исходной звезды свойства черной дыры будут одними и теми же, подчиняясь только законам теории гравитации. Расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Астрономы нашли многие сотни кандидатов в черные дыры с массами от единиц до миллиардов солнечных масс, однако их изучение затруднено огромными расстояниями от Земли.
Электрический заряд – свойство частицы, благодаря которому она может отталкивать (или притягивать) другие частицы, имеющие заряд того же (или противоположного) знака.
Электромагнитное взаимодействие – взаимодействие, возникающее между частицами, имеющими электрический заряд; второе по силе из четырех фундаментальных взаимодействий.
Электрон – частица с отрицательным электрическим зарядом, которая вращается вокруг ядра атома.
Элементарная частица – частица, которая считается неделимой. По первоначальному смыслу понятие «элементарная» означает простейшая, не имеющая внутренней структуры, неделимая. По мере углубления наших знаний о природе материи многие частицы, ранее считавшиеся элементарными, потеряли право так называться.
Эпохи эволюции Вселенной – см. таблицу.

 


notes

Назад: Бог как иллюзия
Дальше: Примечания