Часть пятая
Вершина пирамиды
Глава 13
Энергия
Энергетическая нищета
Археологи расходятся во мнениях по поводу того, когда человечество впервые приручило огонь. Некоторые считают, что это случилось лишь 125 тысяч лет назад, другие указывают на свидетельства, которым 790 тысяч лет. В любом случае, как только наши предки выяснили, что получается, если долго тереть одну палку о другую, они больше никогда не возвращались в прошлое. Огонь предоставил им надежный источник тепла и света, и это навсегда изменило нашу историю. К сожалению, примерно для одного из трех жителей Земли за последние 100 тысяч лет мало что изменилось.
Организация Объединенных Наций подсчитала, что в наше время полтора миллиарда человек живут без электричества, а три миллиарда до сих пор зависят от примитивных видов топлива, таких как дерево или уголь, для того чтобы приготовить пищу и обогреть жилище. В субэкваториальной Африке эти цифры еще выше: более 70 % населения там не имеют доступа к электричеству. Эта проблема порождает целый набор последствий. Энергия – возможно, самая важная из ключевых составляющих изобилия. Будь у нас достаточное количество энергии, мы могли бы решить проблему дефицита воды, а это, в свою очередь, помогло бы разобраться с большинством имеющихся в настоящее время проблем с глобальным здравоохранением. Энергия обеспечивает освещение, благодаря которому становится возможным образование, а это, в свою очередь, уменьшает бедность. Эта взаимозависимость настолько ярко выражена, что Программа развития ООН предупредила: ни одна из Целей развития тысячелетия, направленных на сокращение бедности на 50 %, не может быть достигнута, если не произойдут существенные улучшения в области энергетики развивающихся стран.
Кенийская аспирантка Мерси Ньима хорошо знает, что 85 % ее страны все еще находится в тисках энергетической нищеты. Мерси провела лето 2010 года в Университете сингулярности, где обрисовала мне картину сложных проблем, которые наблюдала в юности:
Представьте себе, что вам приходится готовить, используя в качестве топлива низкосортную древесину, навоз или отходы урожая и при этом подвергаясь вредному воздействию смертельно опасного токсичного дыма, выделяемого этим топливом. Представьте, что вы серьезно больны, но вас не принимают в больницу, потому что в ней нет электричества, и поэтому они не могут предложить вам даже самого простого лечения. Представьте, что вашим друзьям угрожает эпидемия смертельно опасного заболевания, но вакцины нет, потому что нет холодильников. Представьте себе, что вы или ваша подруга беременны; ночью у вас начинаются схватки, но у вас нет ни света, ни обезболивающих препаратов и нет никакого способа спасти вашу жизнь или жизнь вашего ребенка в случае осложнений.
Мерси причисляет себя к новому африканскому «поколению гепардов» (cheetah generation) – это стремительные лидеры предпринимательства, которые работают над тем, чтобы вырвать континент из челюстей нищеты, коррупции и дурного управления: эти три проблемы, считает Мерси, можно было бы в значительной степени решить, будь у африканцев больше доступа к энергии:
Представьте женщин и детей, которые каждый день проводят по несколько часов в поисках всё более скудного топлива. Они подвергаются риску нападения диких животных, а иногда и изнасилования. А как только они начинают жечь биомассу, выделяется едкий дым, который вызывает серьезные болезни легких и превращает кухни в смертельные ловушки. Дети и их матери живут в состоянии постоянного удушья. Загрязнение воздуха в домах приводит к респираторным заболеваниям, к пневмонии, бронхиту и раку легких. Женщины и дети, проводящие длительное время в течение каждого дня вокруг традиционных очагов, вдыхают эквивалент двух пачек сигарет в день. От вдыхания вредного дыма в Африке умирает больше людей, чем от малярии.
Кроме того, поскольку дети вместо школы должны помогать собирать топливо, наносится серьезный урон их образованию. Вечером возникает новая проблема: им надо делать уроки, но у них нет света. Тут мог бы помочь керосин, но он дорогой и пожароопасный. К тому же, говорит Мерси, учителя не хотят работать в общинах, где нет света и не хватает оборудования. Впрочем, последствия энергетической нищеты выходят за рамки домов и школ:
Нехватка энергии, помимо всего прочего, означает, что вам сложно открыть даже самое простое предприятие. Этот дефицит влияет на каждый аспект жизни в Кении, и похожая ситуация наблюдается по всему континенту. Это жестокая реальность для большинства африканцев, которые живут в энергетической нищете.
Однако все это можно изменить, утверждает Эмем Эндрюс. Когда-то она была старшим программным менеджером в компании Shell Nigeria, а сейчас занимается энергетическим бизнесом в Силиконовой долине. Эмем убеждена:
Африка может стать энергетически независимой. Одна только Нигерия располагает такими запасами нефти, что ее хватит на весь континент. Однако самый главный источник энергии – это солнце. Причем это источник децентрализованный, абсолютно демократичный и доступный для всех. Африка находится в широтах с очень высокой инсоляцией, солнечный свет сюда поступает в изобилии и бесплатно, и у нас достаточно пустынь, которые никак не используются. У нас просто нет технологий, чтобы освоить эту энергию.
По данным Транссредиземноморского сотрудничества в области возобновляемой энергии (Trans-Mediterranean Renewable Energy Cooperation) – международной сети ученых и экспертов, учрежденной Римским клубом, – на один квадратный километр африканских пустынь падает столько же солнечной энергии, сколько можно было бы получить при сжигании 1,5 миллионов баррелей нефти или 300 тысяч тонн угля. Германский аэрокосмический центр считает, что количество солнечной энергии, которую получают пустыни Северной Африки, в сорок раз превышает мировую потребность в электричестве. Если прибавить к этому обширные запасы энергии ветра, а также гидротермальной и гидроэлектрической энергии, станет очевидно, что континент способен не только обеспечивать собственные потребности, но и экспортировать излишки энергии в Европу. Возможно, самое большое преимущество Африки на пути раскрытия этого мощного потенциала заключается, как ни парадоксально, именно в том, что там сейчас практически полностью отсутствует энергетическая инфраструктура. Подобно тому как дефицит проводных телефонных линий в Африке способствовал мгновенному распространению беспроводных сетей, так и недостаточное количество крупных и централизованных тепловых электростанций, работающих на угле и мазуте, освобождает место для развития децентрализованных систем поколения возобновляемой энергии. Конечно, сначала развивать эти технологии и финансировать это развитие будут более состоятельные разработчики, преимущественно в странах «первого» мира (в идеале – в сотрудничестве с представителями «восходящего миллиарда»). Однако, как только эти системы проложат путь в Африку, они тут же окажутся в более выгодном положении по сравнению с уже существующими вариантами. Часто забывают, что доставка керосина и генераторов в отдаленные местности и их охрана обходятся в круглую сумму, что часто вздувает цену на электричество до 35 центов за киловатт-час. Поскольку солнечная энергия даже при существующих технологиях стоит всего 20 центов за киловатт-час (если прибавить цену самих солнечных батарей, получится около 25 центов), то уже выходит 30 % экономии в сравнении с другими технологиями. Но существующие сегодня солнечные технологии – это далеко не конец истории.
Светлое будущее
Как и многие другие предприниматели, пережившие крах доткомов, Эндрю Биб успел уйти вовремя. В 2002 году он продал свою интернет-компанию Bigstep и отправился на поиски «чего-то более зеленого». Вдохновившись идеями физика-визионера Фримена Дайсона, предлагавшего «хакнуть фотосинтез», Биб стал придумывать бизнес в области возобновляемой энергии. Сначала он объединился с Биллом Гроссом, генеральным директором Idealab, и они основали компанию Energy Innovations (EI), строившую гелиоконцентраторы – устройства для концентрации лучистой энергии солнца. Вскоре фирма разделилась на две, и Биб возглавил подразделение EI Solutions, занимавшееся установкой концентраторов. За последующие несколько лет EI Solutions выросла в компанию стоимостью в 25 млн долларов, в активе которой – установка концентраторов и солнечных батарей в офисах Google, Sony и Disney. Затем Биби продал свой бизнес корпорации Suntech – крупнейшему из производителей солнечного оборудования в мире, – а сам возглавил в Suntech управление сбытом продукции. Затем он занялся международными продажами и маркетингом – и до сих пор занимает эту позицию. Как человек, отвечающий за продажу большей части солнечного оборудования в мире, Биб держит руку на пульсе солнечной энергетики. И, по его словам, этот пульс бьется очень четко:
Солнечный рынок – это просто кейс из базового учебника экономики. Производство и установка солнечного оборудования растут в течение последнего десятилетия на 45–50 % в год. Это просто невероятно, учитывая, что рост в других областях энергетики составляет всего 1 % в год. В 2002 году, когда я только начинал работать в этой индустрии, продавалось примерно 10 мегаватт общей мощности в год. В этом году общее количество, скорее всего, составит 18 гигаватт. То есть мы видим увеличение почти в 2000 раз менее чем за десять лет. В то же время стоимость солнечной энергии стремительно падает. Четыре года назад, когда я покупал солнечные панели для Google, выходило 3,20 доллара за ватт; сегодня средняя цена за ватт установленного оборудования – менее 1,30 доллара. И мы постоянно находим возможности еще более радикального снижения цен. Так странно – заниматься бизнесом, в котором одна из главных целей – найти способ продать продукт как можно дешевле, – но именно это сейчас и происходит.
И предела пока не видно. Данные за последние тридцать лет показывают, что при каждом кумулятивном удвоении мирового производства фотоэлектрических элементов их стоимость падает на 20 %. Это еще одна из экспоненциальных кривых «стоимость/производительность», так называемый закон Суонсона (в честь Дика Суонсона, одного из основателей корпорации SunPower). По словам Суонсона, снижение затрат – это, по существу, главная цель новых технологий:
Дорогой кристаллический кремний был самой затратной частью панели, и мы последовательно делаем кремниевые пластины тоньше и тоньше. Сегодня на генерацию одного ватта энергии мы используем половину того количества кремния, которое использовали всего пять лет назад.
Снижение цен на кремниевые пластины еще в десять раз считает своей миссией компания 1366 Technologies, энергетический стартап, запущенный профессором МТИ Эмануэлем Саксом (цифра в названии компании – это среднее количество ватт солнечной энергии, падающей на квадратный метр Земли за год). Разработав новый способ производить тонкие кремниевые пластины (без того чтобы вырезать их из массивных слитков), компания серьезно снизит стоимость самой дорогой части любой фотоэлектрической системы.
Такого рода изобретения не должны удивлять. Потенциальный рынок солнечной энергии и ее потенциальные выгоды для человечества так огромны, что снижение стоимости оборудования, упрощение его установки и увеличение глобального производства – это цель сотен, если не тысяч предпринимателей, больших корпораций и университетских лабораторий. В Соединенных Штатах количество патентов в области альтернативной энергетики достигло рекордной отметки в 379 за первую четверть 2010 года, а количество патентов в области солнечной энергетики выросло почти втрое с середины 2008-го до начала 2010-го.
И с тех пор темп открытий только продолжает нарастать. Ученые в IBM недавно объявили, что нашли способ заменить дорогие редкоземельные металлы, такие как индий и галлий, на менее дорогие элементы – медь, олово, цинк, серу и селен. Инженеры МТИ тем временем, используя углеродные нанотрубки в концентраторах солнечной энергии, сделали солнечные панели в сто раз более эффективными, чем традиционные модели. «Вместо того чтобы покрывать всю свою кровлю фотоэлектрическими элементами, – говорит доктор Майкл Стрэйно, руководитель команды исследователей, – вы можете установить миниатюрные батареи с антеннами, которые будут направлять на них поток фотонов».
Да нужны ли вообще эти панели на крышах? В мэрилендской компании New Energy Technologies изобрели способ превращать в солнечные батареи обычные окна. В этой технологии используется самая маленькая в мире органическая солнечная ячейка, которая, в отличие от обычных фотоэлементов, может генерировать электричество и из естественных, и из искусственных источников света, причем его производительность превосходит сегодняшние коммерческие солнечные и тонкопленочные технологии в десять раз.
Все эти инновации, однако, вскоре могут быть сметены более революционными открытиями. Стивен Рэнд, физик из Мичиганского университета, недавно обнаружил, что свет, проходя с определенной интенсивностью через диэлектрик – например, стекло, – способен порождать магнитные поля в 100 миллионов раз сильнее, чем считалось раньше.
«Вы можете весь день смотреть на уравнения движения – и все равно не видеть этой возможности, – говорит Рэнд. – Нас всех учили, что так не бывает». Но в его экспериментах поля достаточно сильны, чтобы можно было извлекать энергию. Результатом могут стать солнечные батареи без полупроводников, что снизит их стоимость во много раз.
Биб, однако, не думает, что обязательно требуются радикальные прорывы такого рода. «Я доволен этим плавным подъемом, который мы сейчас переживаем, – говорит он. – Италия и США достигнут сетевого паритета через два года и пять лет соответственно. В сегодняшней Калифорнии домовладелец с хорошей кредитной историей может установить у себя солнечное оборудование бесплатно и при этом заплатить за первый месяц его использования меньше, чем он платил в предыдущем месяце, когда был подключен к энергосети. Конечно, это работает из-за 30 %-ного калифорнийского налогового вычета, но, как только цены на солнечную энергию упадут еще на 30 % – чего мы ожидаем в ближайшие четыре года, – нам больше не нужен будет налоговый вычет. Как только солнечная энергия достигнет сетевого паритета без всяких субсидий, произойдет настоящий бум. Когда вы летите над Лос-Анджелесом, вы видите под собой мили и мили плоских крыш. Почему бы не установить на них на всех солнечные батареи? Рано или поздно, после достижения сетевого паритета, все эти крыши покроются ими».
Сделать солнечную энергию достаточно дешевой, чтобы в самом деле покрыть солнечными батареями все крыши в стране и успешно конкурировать с углем, – цель министра энергетики США Стивена Чу, провозглашенная в 2011 году в рамках инициативы SunShot («Рывок к Солнцу») – амбициозной аллюзии на речь, произнесенную президентом Джоном Кеннеди в 1962 году, в которой он призвал Америку сделать «рывок на Луну» до конца десятилетия. Цель инициативы SunShot – вдохновить американских предпринимателей на дальнейшие инновации и снижение общей стоимости солнечных энергетических систем еще на 75 % к 2020 году. В результате солнечная энергия будет стоить около 1 доллара за ватт, или 6 центов за киловатт-час – и эта цена будет способна конкурировать даже с ценой угольного топлива.
Но не будем концентрироваться на одной только солнечной энергии – ведь стоимость энергии ветра тоже приближается к сетевому паритету. По данным отчета форума Bloomberg New Energy Finance за 2011 год, в некоторых регионах Бразилии, Мексики, Швеции и Соединенных Штатов энергия, генерируемая наземными ветряными электростанциями, стоит 68 долларов за мегаватт, в то время как уголь – 67 долларов. Спрос также растет. Vestas, одна из самых больших в мире компаний, генерирующих энергию с помощью ветряков, сообщила о повышении спроса на 182 % в 2009–2011 годах. В том же 2011-м по всему миру было установлено на 20 % больше ветровых турбин, чем годом раньше, – и планируется, что это число удвоится к 2015 году.
Однако, несмотря на все эти большие достижения, требуются и другие формы энергетических инноваций. Солнечная энергия и энергия ветра – перспективные источники электричества, но оно покрывает только 40 % всех энергетических потребностей Америки. Остальные 60 % – это потребности транспорта (29 %) и обогрев и вентиляция домов и офисов (31 %). Топливо, которое использует транспорт, – это на 95 % нефтепродукты, в то время как топливо для наших зданий – это и нефть, и природный газ. Чтобы прекратить зависимость от углеводородов, нам нужно чем-то заместить эти 60 %. По-видимому, будет непросто. «Нефть и газ – богатые и солидные индустрии, – говорит Биб, – и вопрос заключается в следующем: как нам это изменить? Эти индустрии не собираются сдавать свои позиции, и у них достаточно денег, чтобы удерживать их еще длительное время».
На помощь приходит искусственная жизнь
А что, если изменения возникнут внутри этих гигантских углеводородных крепостей? В 2010 году Эмиль Джейкобс, вице-президент по исследованиям и развитию корпорации ExxonMobil, объявил о запуске беспрецедентного шестилетнего проекта стоимостью 600 млн долларов по разработке нового поколения биотоплива. Конечно, биотопливо первого поколения – в основном получаемый из кукурузы этиловый спирт – было настоящей катастрофой. Оно причинило большой ущерб экологии и отняло у сельского хозяйства миллионы акров площадей, что привело к резкому увеличению цен на продовольствие. Но новое биотопливо Exxon не использует сельскохозяйственные культуры и не требует значительных земельных территорий. Вместо этого Exxon планирует выращивать свое биотопливо из водорослей.
Министерство энергетики США считает, что водоросли могут производить в тридцать раз больше энергии на один акр, чем более традиционные виды биотоплива. Более того, поскольку ряской зарастает практически любой стоячий водоем, она сейчас тестируется на нескольких крупных электростанциях в качестве поглотителя углекислого газа. Дымовые трубы выведены в водоемы, и водоросли поглощают COЭто замечательная технология, но, чтобы скорее воплотить ее в реальность, Exxon объединилась с «хулиганом от биологии» Крейгом Вентером и его компанией Synthetic Genomics Inc. (SGI).
Для изучения методов выращивания водорослей и технологий извлечения нефти Exxon и SGI построили новую испытательную станцию в Сан-Диего. Вентер называет ее «перевалочный пункт для водорослей». Солнечным днем в феврале 2011 года для меня провели экскурсию по этому месту. Снаружи здание выглядит как высокотехнологичная теплица: чистые пластиковые панели, белые распорки, двери со шлюзовыми устройствами. Когда мы вошли в одну из таких дверей, Пол Ресслер, возглавляющий проект, объяснил основные принципы: «Нашему биотопливу нужны три вещи: солнечный свет, CO2 и морская вода. Причина, по которой мы пользуемся морской водой, заключается в том, что мы не хотим занимать сельскохозяйственные земли и пользоваться водой, которая идет на сельское хозяйство. CO2 – это более сложная проблема. Вот почему тут подошла бы секвестрация CO2: этот метод и замедляет глобальное потепление, и предоставляет концентрированный источник».
Мы проходим через еще одну дверь – и оказываемся внутри главного помещения размером с футбольное поле, в котором практически ничего нет, если не считать полудюжины чанов с водорослями и большого плаката «Жизнь клетки» на стене. Ресслер показывает на плакат. «Не знаю, насколько хорошо вы помните школьную программу по биологии, но фотосинтез – это способ, с помощью которого растения превращают энергию света в химическую энергию. В течение дня растения используют солнечный свет, чтобы расщепить воду на водород и кислород, потом соединяют все это с углекислым газом, и в результате получается углеводородное топливо, которое мы называем „бионефть“: обычно растения используют его ночью для восстановления. Наша цель – научиться надежно и в больших количествах производить эту бионефть».
Вентер, тоже присоединившийся к экскурсии, вмешивается в разговор: «Пол слишком скромен. На самом деле он нашел способ заставить клетки водорослей добровольно выделять накопленные ими липиды, превращая эти клетки в микрофабрики». Ресслер подхватывает объяснение: «Теоретически, как только процесс будет отлажен, мы сможем сделать его непрерывным и потом просто „собирать урожай“ бионефти. Клетки будут постоянно ее производить. Нам не нужно будет собирать сами клетки – достаточно просто собрать бионефть, которую они будут выделять».
Это весьма эффективная технология. «Если сравнить с более традиционными видами биотоплива, – говорит Вентер, – то кукуруза дает 18 галлонов с акра в год (около 170,3 литров с гектара), а пальмовое масло – 625 галлонов (ок. 5915 л/га). А эти модифицированные водоросли, как мы планируем, дадут 10 000 галлонов с акра в год (ок. 94 635 л/га). И мы хотим наладить непрерывное производство на площади в две квадратные мили».
Давайте посчитаем: две квадратные мили – это 1280 акров. 10 000 галлонов умножить на 1280 – это 12,8 млн галлонов, то есть 48,45 млн л топлива в год. С учетом сегодняшнего среднего расхода топлива в США (25 миль на галлон, то есть примерно 10,58 км/л) и среднего годового пробега (12 000 миль, то есть примерно 19 200 км) выходит, что две квадратных мили водорослевой фермы будут производить достаточно топлива, чтобы хватило примерно на 26 тысяч автомобилей. А какая площадь требуется, чтобы заправить все автомобили Америки? Сейчас в США примерно 250 миллионов автомобилей – значит, необходимо 18 750 квадратных миль, то есть примерно 0,49 % континентальной территории США (или 17 % территории штата Невада). Совсем не плохо. И представьте себе, что произойдет, когда наши машины смогут проезжать 40 км на один литр топлива, а всё больше водителей будут пересаживаться в электрические автомобили.
Даже если SGI не добьется цели, Exxon – не единственный участник этой гонки. LS9, энергетическая компания из Сан-Франциско, объединилась с корпорацией Chevron (и с Procter & Gamble), чтобы разработать собственное биотопливо, а неподалеку оттуда, в Эмеривилле, штат Калифорния, компания Amyris Biotechnologies таким же образом создала альянс с Shell. Корпорация Boeing и авиакомпания Air New Zealand начинают разрабатывать авиационное топливо на основе водорослей, а некоторые компании уже успели зайти еще дальше. Авиакомпания Virgin Airlines уже сейчас заправляет свои «Боинги-747» топливной смесью, частично состоящей из биотоплива на основе кокосового масла и пальмового масла бабассу, а компания Solazyme, базирующаяся в Сан-Франциско, в 2010 году поставила ВМФ США 1500 галлонов водорослевого биотоплива, выиграв таким образом тендер еще на 150 000 галлонов. Тем временем Министерство энергетики финансирует три разных проекта производства биотоплива, а организация Clean Edge, которая занимается мониторингом рынков возобновляемой энергии, сообщает в своем десятом ежегодном обзоре индустрии, что общая стоимость биотоплива, произведенного в 2010 году, составила 56,4 млрд долларов – и планируется, что к 2020 году она достигнет 112,8 млрд.
Очевидно, что интерес к дешевым видам топлива с нейтральным уровнем эмиссии углерода сейчас беспрецедентно высок, но не все проблемы еще решены. Ни одна из вышеупомянутых компаний (как и ни один из их не упомянутых здесь конкурентов) пока не придумала, как сделать эти технологии повсеместными. Чтобы действительно удовлетворить наши потребности, говорит Стивен Чу, производство биотоплива должно увеличиться в миллион – а возможно, даже в десять миллионов раз. С другой стороны, он напоминает, что такие же ученые, как те, что работают сегодня над биотопливом, смогли наладить массовое промышленное производство лекарств от малярии. «Так что вероятность имеется, – говорит он, – а учитывая профессиональный уровень ученых, принимающих участие в решении проблемы, то я бы хотел верить, что даже высокая вероятность».
Но Министерство энергетики не рассчитывает только на биотопливо в решении проблемы энергетического изобилия. Его также весьма интересует возможность «хакнуть фотосинтез». Инициатива SunShot финансирует Объединенный центр искусственного фотосинтеза (Joint Center for Artificial Photosynthesis, JCAP) – межинститутский проект стоимостью 122 млн долларов, который совместно ведут Калтех, Беркли и Ливерморская национальная лаборатория имени Лоуренса. Задача JCAP – разработать поглотители солнечной энергии, катализаторы, молекулярные линкеры и разделительные мембраны – все необходимые элементы искусственного фотосинтеза. Говорит доктор Гарри Этуотер, директор Центра исследований устойчивой энергетики Калтеха, один из ведущих исследователей JCAP:
Мы разрабатываем искусственный процесс фотосинтеза. Под искусственным я имею в виду то, что во всей системе нет ни одного живого или органического компонента. Мы, по сути дела, превращаем солнечный свет, воду и CO2 в топливо, которое можно хранить и транспортировать, – мы называем его «солнечное топливо» – и делаем это для того, чтобы удовлетворить 2/3 наших потребностей в энергии, которые не может покрыть обычная фотоэлектрическая энергетика.
Этим солнечным топливом можно будет не только заправлять наши автомобили и согревать наши дома. Этуотер верит, что сможет увеличить эффективность фотосинтеза в десять, а возможно, и в тысячу раз – и это означает, что солнечные виды топлива полностью заменят ископаемые виды. «Мы приближаемся к критическому переломному моменту, – говорит он. – Есть большая вероятность того, что через тридцать лет мы будем спрашивать себя: „Боже мой, зачем мы вообще когда-то сжигали углеводороды, чтобы добыть тепло и энергию?“»
Священный Грааль хранения
Мы так сильно зависим от углеводородов не только из-за их удельной энергоемкости и доступности, но и еще по одной важной причине: их легко хранить. Уголь мы храним просто кучей, нефть – в различных резервуарах. Но солнечная энергия существует, только пока светит солнце, а энергия ветра – только пока дует ветер. Эти ограничения остаются самым главным препятствием к широкому распространению технологий возобновляемой энергии. Пока солнце и ветер не будут надежно, круглосуточно и бесперебойно поставлять энергию, ни солнце, ни ветер не займут сколько-нибудь значительную часть в нашей энергетике. Несколько десятилетий назад Бакминстер Фуллер предложил идею глобальной энергосистемы, которая смогла бы передавать энергию, полученную на солнечной стороне планеты, на ее ночную сторону. Но большинство специалистов связывают свои надежды с созданием большого числа местных хранилищ на уровне локальных сетей, способных «уплотнять» или «смещать по времени» энергию – то есть накапливать ее в течение дня и раздавать ночью. Именно эта идея и стала священным Граалем движения за экологически чистую энергию.
По большому счету, не важно, насколько упадет цена на солнечную энергию, пока мы не найдем способ ее хранить, а последнее пока еще ни разу не удавалось в больших масштабах. Для таких хранилищ необходимы колоссальные аккумуляторные батареи, и сегодняшние литий-ионные батареи категорически не подходят для этой задачи. Их емкость необходимо увеличить в 10–20 раз, и – если мы действительно хотим сделать эти устройства масштабируемыми – их нужно делать из материалов, которые встречаются на Земле в изобилии. Иначе мы просто поменяем экономику, полностью зависящую от углеводородов, на экономику, зависящую от лития.
К счастью, в этой области уже наблюдается прогресс. За последнее время рынок хранилищ с накопителями энергии был усовершенствован в достаточной степени, чтобы им заинтересовались венчурные капиталисты. Лидирует здесь инвестиционная компания Kleiner Perkins Caufield & Byers (KPCB), у которой явно есть дар угадывать победителей – если судить по ее инвестициям в 425 компаний, включая AOL, Amazon, Sun, Electronic Arts, Genentech и Google. А учитывая то, что главный партнер Kleiner Джон Доерр – страстный защитник окружающей среды и борец с глобальным потеплением, многие из объектов его инвестиций связаны с энергетикой.
Зимой 2011 года я связался с Биллом Джоем, который раньше работал в Sun Microsystems, а сейчас является главным партнером KPCB по экологически безопасной энергетике, и он рассказал мне о прогрессе в области хранения энергии. Две последних инвестиции были нацелены на трансформацию именно этого рынка. Первая инвестиция была сделана в компанию Primus Power, создающую перезаряжаемые проточные батареи, в которых электролиты протекают через электрохимическую ячейку, преобразующую химическую энергию в электрическую. Эти устройства уже хранят энергию ветра в новом 25-мегаваттном хранилище стоимостью 47 миллионов долларов в Модесто, штат Калифорния.
Второе вложение Kleiner – это компания Aquion Energy, которая делает батареи, похожие по устройству на литий-ионные, но с одним существенным отличием. В основе этих батарей – не редкий и токсичный литий, а натрий и вода – два дешевых и повсеместно распространенных вещества, неядовитых и негорючих. В результате получилась батарея, которая высвобождает энергию равномерно, не подвержена коррозии, изготавливается из материалов, имеющихся на Земле в изобилии, и самым буквальным образом достаточно безопасна, чтобы ее съесть. Говорит Билл Джой:
Я думаю, что, используя эти технологии, мы сможем хранить и поставлять киловатт-час за один цент. Так что я могу пропустить неравномерный поток энергии ветра через мою систему Aquion и уплотнить ее еще примерно за один цент за киловатт-час. И это все затраты. Через несколько лет вы увидите эти продукты на рынке. А после этого я не вижу ни одной причины, по которой мы не смогли бы получить надежные возобновляемые источники энергии с накопителями.
Профессор Массачусетского технологического института Дональд Садоуэй, один из главных мировых авторитетов в области химии твердого тела, также смотрит на будущее хранилищ с накопителями оптимистично. При поддержке Агентства передовых исследований в области энергетики (Advanced Research Projects Agency-Energy, ARPA-E) и фонда Билла Гейтса Садоуэй разработал и продемонстрировал жидкометаллический аккумулятор (Liquid Metal Battery, LMB), идея которого возникла под впечатлением от высокой плотности тока и огромных масштабов производства на алюминиевых заводах. Температура внутри LMB достаточно высока, чтобы удерживать в жидком состоянии два металла-компонента. Один из них (например, сурьма) имеет высокую плотность и опускается на дно. Второй, с низкой плотностью – например, магний, – всплывает. Между ними расположен электролит из расплавленной соли, способствующий обмену электрическими зарядами. В результате получился аккумулятор с зарядом в 10 раз больше, чем у самых продвинутых современных батарей, но при этом с простой и дешевой конструкцией, который стоит 250 долларов за киловатт-час с полной установкой – в десять с лишним раз дешевле, чем литий-ионные батареи. К тому же разработка Садоуэя легко масштабируется. По словам инноватора,
сегодняшние рабочие прототипы LMB имеют размер хоккейной шайбы и максимальную емкость 20 Вт·ч. Но мы уже работаем над бóльшими по размеру батареями. Представьте себе устройство размером с морозилку и емкостью 30 кВт·ч – оно будет способно обеспечивать ваш дом энергией в течение дня. Мы разрабатываем их с таким расчетом, чтобы их можно было «установить и забыть», то есть они смогут работать по 15–20 лет без всякого человеческого вмешательства. Это будет дешевое, тихое устройство, не нуждающееся в обслуживании и не производящее газов с парниковым эффектом, причем изготовлено оно будет из материалов, имеющихся в природе в изобилии.
Бытовое устройство такого рода будет стоить около 7500 долларов. Если учесть, что оно будет работать в течение пятнадцати лет, и добавить стоимость установки, то домашний LMB обойдется хозяину меньше чем в 75 долларов в месяц.
Однако главная прелесть этих систем заключается в их потенциальной масштабируемости. LMB размером с морской контейнер сможет обеспечить энергией целый квартал; мощности LMB размером с супермаркет хватит на небольшой город. «В течение следующего десятилетия мы планируем производить LMB размером с контейнеры, а вскоре их сменят устройства семейного размера, – говорит Садоуэй. – Нам четко видна цель, и на пути к ее достижению нам не нужны какие-то волшебные прорывы».
Конечно, если мы действительно решим проблему хранения и сделаем повсеместной солнечную энергию и энергию ветра, встанет вопрос: что же нам делать со всеми этими грязными угольными электростанциями? На этот счет у Билла Джоя тоже есть идеи:
Сложно поверить, что энергетические компании откажутся от полностью амортизированных активов, которые каждый день генерируют прибыль. Что нам нужно – так это поменять модель и превратить угольные электростанции в предприятия аварийного резерва. Мы можем применять на 100 % возобновляемую энергию, а тепловые электростанции запускать только в тех случаях, когда прогноз погоды обещает нам большие проблемы. Мы просто будем оплачивать их содержание в рабочем состоянии и время от времени запускать – как мы в случае нужды запускаем аварийный генератор.
Натан Мирвольд и Четвертое поколение
Натан Мирвольд любит решать сложные задачи – возможно, больше, чем что-либо другое на свете. Он поступил в колледж, когда ему было четырнадцать, а окончил Принстонский университет – с тремя степенями магистра и степенью доктора философии – в двадцать три. После этого провел год со Стивеном Хокингом, изучая космологию, после чего стал знаменитым палеонтологом, завоевал несколько наград на фотоконкурсах и стал шеф-поваром высокой кухни – и все это в свободное от работы время. Работал же Мирвольд главным технологом Microsoft и ушел в отставку, заработав состояние, которое, по выражению журнала Fortune, «насчитывает не меньше девяти цифр». После этого он стал одним из основателей компании – акселератора инноваций Intellectual Ventures, но и это было только разминкой. «С моей точки зрения, основная проблема, которую нам нужно решить в этом столетии, – это как распространить американские достижения в области неуглеводородной энергетики на весь мир, – говорит он. – Это серьезнейший энергетический вызов».
Мирвольд не ошибается. Земная цивилизация в настоящий момент потребляет 16 тераватт-часов энергии – в основном получая ее из углеводородных источников. Если мы серьезно настроены на борьбу с энергетической нищетой и на повышение глобальных стандартов жизни, то мы должны в три – а возможно, и в четыре – раза увеличить этот объем в ближайшие двадцать пять лет. Но если мы при этом хотим также стабилизировать количество CO2 в атмосфере и остановить его на уровне 450 частиц на миллион (это считается количеством, при превышении которого могут произойти катастрофические необратимые изменения климата), нам нужно сделать так, чтобы 13 из этих 16 тераватт-часов были «чистыми». Иными словами: каждый год мы, люди, выбрасываем в атмосферу почти 26 миллиардов тонн CO2, то есть около 3,7 т на каждого человека на планете. У нас есть чуть больше двух десятилетий, чтобы сократить это число практически до нуля и в то же время увеличить производство глобальной энергии, чтобы удовлетворить потребности «восходящего миллиарда».
Многие считают, что солнечная энергия станет повсеместно доступной и появятся способы ее хранить, так что с помощью Солнца мы сможем удовлетворять свои потребности в возобновляемой энергии. Но есть и другие, включая Мирвольда, которые уверены, что нам нужно прибегнуть к другому источнику – атомной энергетике. На самом деле это мнение никогда еще не было так популярно.
Его разделяла и администрация Джорджа Буша-младшего, и администрация Обамы. В пользу атомной энергетики высказываются такие серьезные экологи, как Стюарт Бранд, Джеймс Лавлок и Билл Маккиббен. Это мощное лоббирование в пользу вида энергии, который раньше так же страстно отвергали, озадачивает людей – но в основном потому, что они основывают свое мнение на фактах сорокалетней давности. Говорит Том Блис, автор книги «Рецепт для планеты: безболезненное излечение наших кризисов в энергетике и экологии» (Prescription for the Planet: The Painless Remedy for Our Energy and Environmental Crises):
Большинство противников атомной энергетики вспоминают об аварии на АЭС Три-Майл-Айленд в 1970-х годах, после чего развитие этой индустрии в США было заморожено. Но исследования не прекратились – прекращено было лишь новое строительство. Мы на два поколения ушли от тех ранних технологий – и они с тех пор претерпели гигантские изменения.
Ученые классифицируют атомную энергетику по поколениям реакторов. Реакторы I поколения были построены в пятидесятые-шестидесятые годы; ко II поколению относятся все реакторы, работающие в США сегодня. Реакторы поколения III значительно дешевле и безопаснее, чем предшественники, но наиболее мощной поддержкой пользуются технологии IV поколения. Причина понятна – эти технологии были специально разработаны, чтобы решить все проблемы, которые долгое время ассоциировались с атомной энергетикой: безопасность, стоимость, эффективность, радиоактивные отходы, дефицит урана и даже угроза терроризма, – не создавая при этом новых проблем.
Существуют два основных варианта реакторов IV поколения. Первый – это реакторы на быстрых нейтронах, имеющие более высокую температуру активной зоны, поскольку нейтроны там движутся быстрее, чем в традиционных реакторах на тепловых нейтронах. Второй вариант – это жидкосолевые реакторы. И те, и другие могут использовать уран-238 и торий, которого на Земле в четыре раза больше, чем урана, и который не оставляет долгосрочных радиоактивных отходов.
Общее правило технологий IV поколения – они «пассивно безопасны», то есть в случае нештатной ситуации способны остановить процесс самостоятельно, без участия человека. Большинство быстрых реакторов, например, используют в качестве теплоносителя расплавленный металл. Когда расплав перегревается, он расширяется, плотность расплава падает и реакция замедляется. По словам ядерного физика из Аргоннской национальной лаборатории Джорджа Стэнфорда, активная зона реактора IV поколения не может расплавиться:
Мы это точно знаем, потому что во время публичных демонстраций Аргоннская лаборатория в точности воссоздала условия, которые привели к авариям на Три-Майл-Айленд и в Чернобыле, – и ничего не случилось.
Но больше всего энтузиазма у многих вызывают так называемые «реакторы у вас во дворе». Эти небольшие модульные ядерные реакторы замкнутого цикла, которые производятся фабричным способом (что делает их дешевле). Они полностью запечатаны и разработаны с таким расчетом, чтобы служить в течение десятилетий без технического обслуживания. Несколько знакомых лиц – такие компании, как Toshiba или Westinghouse, – а также некоторое количество новичков, среди них TerraPower – компания Натана Мирвольда, – пришли в этот бизнес из-за огромного потенциала подобных устройств.
Пригласив в качестве соинвесторов Билла Гейтса и венчурного капиталиста Винода Хослу, Мирвольд основал Terra-Power, чтобы разработать и вывести на рынок реактор на бегущей волне (traveling wave reactor, TWR), который он описывает как «самый простой в мире пассивный реактор-размножитель на быстрых нейронах». В TWR нет движущихся деталей, он не может расплавиться и способен безопасно работать в течение более пятидесяти лет, самым буквальным образом без всякого человеческого вмешательства. И при этом не требует ни дальнейшей утилизации отработанного топлива, ни его переработки, ни каких-либо сооружений для хранения радиоактивных отходов. Более того, сам корпус реактора служит надежным резервуаром для захоронения. По сути дела, TWR – это источник энергии в духе «построить и забыть», что делает его идеально подходящим для развивающихся стран.
Конечно, для удовлетворения энергетического голода третьего мира потребуются десятки тысяч таких мини-электростанций. Мирвольд осознает масштаб проблемы, но замечает:
Если мы собираемся достигнуть нашей цели – энергетического изобилия, то самый большой прирост понадобится в таких регионах, как Африка или Индия. Именно потому мы и разрабатываем эти реакторы – безопасные, легкие в управлении и легко тиражируемые. Мы просто обязаны сделать так, чтобы они были пригодны к использованию для развивающихся стран.
Важны и преимущества для окружающей среды, которые сулит эта технология:
Мы можем обеспечивать мир энергией в течение следующей тысячи лет, просто сжигая обедненный уран и отработанные топливные стержни, которые мы сегодня храним штабелями.
Когда же мы сможем увидеть первый такой реактор? Мирвольд хочет, чтобы демонстрационная версия заработала уже в 2020 году. Если это план осуществится, то TerraPower получит огромное преимущество: большинство реакторов IV поколения, по-видимому, выйдут на рынок не раньше 2030-го. И, что еще более важно, Мирвольд убежден, что энергия TWR может продаваться дешевле, чем угольная, – и именно это позволит ей распространиться по всему миру.
Идеальная энергия
Найти источник энергии – только часть проблемы; не менее важно то, как мы доставляем энергию. Представьте себе «умную» сеть линий электропередач, переключателей и сенсоров, способных мониторить и контролировать энергию до уровня каждой лампочки. Это мечта сегодняшних инженеров-энергетиков. В настоящее время существует только одна по-настоящему повсеместная «умная» сеть – это интернет, и поэтому Боб Меткаф постоянно сравнивает современные электрические «тупые» сети с первыми днями телефонной связи.
Меткаф, основатель 3Com Corporation и в настоящее время генеральный партнер Polaris Venture Partners – специалист по инвестициям в энергетику. На заре своей карьеры Меткаф участвовал в создании и Arpanet, и Ethernet, так что он прекрасно знает, что это такое – построить нечто столь же колоссальное, как WWW. Он вспоминает:
В самом начале все было устроено вертикально. Компьютеризацией занималась IBM, линиями связи – AT &T. Голосовая связь, видео и данные – всё это были раздельные сервисы: голос был синонимом телефонной связи, видео ассоциировалось исключительно с телевидением, а данные – с телетайпом, встроенным в ЭВМ, работающую в режиме разделения времени. Это были три разных мира с разными сетями и разными регулирующими организациями. Интернет растворил все эти различия и барьеры.
Сегодня мы наблюдаем подобную балканизацию в энергетике, но Меткаф убежден, что эти барьеры в производстве, дистрибуции, индексировании, контроле, хранении и потреблении вскоре полностью исчезнут:
Когда трафик в Arpanet начал резко увеличиваться, мы прежде всего попытались протолкнуть его через старую инфраструктуру AT &T, сосредоточившись на как можно более эффективном сжатии данных. Мы пытались упаковать данные так же, как мы сегодня пытаемся упаковать энергию. Тогда, как и сейчас, проблема была в централизованной сетке, недостаточно надежной, чтобы отвечать нашим потребностям. Но через сорок лет после Arpanet речь идет вообще не о сжатии – у нас настоящее изобилие информации. Архитектура интернета в конце концов позволила увеличить поток данных в миллион раз. Так что если интернет может послужить руководством к действию, то, как только мы сможем построить следующее поколение энергетических сетей – то, что я называю Enernet, – мы будем просто купаться в энергии. У нас будет такое изобилие энергии, что мы при всем желании не сможем ее потратить.
Какие же свойства должны быть у подобной «умной» сети? Меткаф рисует картину распределенной сетчатой схемы, чем-то похожей на сотовую, которая сделает возможным обмен энергией между огромным количеством производителей и потребителей через местные и региональные сети:
Любой сможет поставить энергию или забрать ее, так же просто, как компьютеры, телефоны или модемы подключаются в наши дни к интернету.
Возможно, самое важное из предсказываемых Меткафом изменений – это появление возможности хранения огромных запасов энергии:
Старая телекоммуникационная сеть совершенно не имела возможностей хранения информации и была похожа на сегодняшние электрические сети. Ваш аналоговый голос входил в сеть с одного конца и выходил с другого. Но все это серьезнейшим образом изменилось. Сегодняшний интернет дает множество способов хранения информации в любом возможном месте – на сетевом коммутаторе, на сервере, у вас дома, у вас в телефоне. Завтрашние умные электросети также смогут хранить энергию: прямо в бытовых приборах у вас дома, у вас в машине, в вашем квартале и в каждой точке производства энергии.
Cisco, один из лидеров индустрии сетевого оборудования, внесла огромный вклад в строительство умных электросетей. Лора Ипсен, старший вице-президент, отвечающая за энергетический бизнес Cisco, объясняет:
Сегодня у нас более полутора миллиардов подключений к интернету. Но это немного, если сравнивать с числом подключений к электрическим сетям, – последних как минимум в десять раз больше. Только подумайте, сколько электроприборов включено в розетку у вас дома, и сравните их с количеством устройств, имеющих IP-адрес. Здесь кроются огромные возможности.
Ипсен считает, что мы стремительно движемся к миру, где каждое устройство, потребляющее электричество, будет иметь свой IP и станет частью распределенного глобального искусственного интеллекта:
Эти подключенные к общей сети устройства, какими бы маленькими ни были, будут сообщать сети о своем потреблении энергии и отключаться, когда они не нужны. В итоге мы сможем удвоить или утроить эффективность отдельного здания или населенного пункта.
У Cisco весьма агрессивный таймлайн для достижения этой цели. В ближайшие семь лет, по словам Лоры Ипсен, в умных электросетях будут доминировать «мониторинг и отклик». Сенсоры, подключенные к интернету, будут отслеживать потребление энергии и регулировать спрос, смещая время использования не самых необходимых в пиковое время устройств – например, сдвигая работу посудомоечной машины на ночь, когда энергия дешевле. В ближайшие десять лет, начиная с 2012 года, солнечная энергия и энергия ветра будут стремительно интегрироваться в бытовое потребление, давая возможность владельцам коммерческой и жилой недвижимости обойтись без использования централизованной электросети для большинства своих потребностей. По сути дела, цель всего этого – интегрированная распределенная генерация энергии, объединенная с «умными» электроприборами, имеющими собственные IP-адреса, и с распределенным хранением. Все это позволит нам пользоваться, как выражаются в Cisco, «идеальной энергией».
Так что же на самом деле означает энергетическое изобилие?
В этой главе мы сосредоточились в основном на солнечной и атомной энергии, а также на биотопливе, но есть еще много энергетических технологий, которые стоит иметь в виду. Я ничего не сказал о природном газе, который, учитывая его большие запасы в США, в настоящее время крайне популярен. Не рассматривал я и геотермальную энергию, относительно надежную и экологически чистую, но не везде доступную.
Однако же есть причины, по которым акцент в этой главе делается на солнечной энергии. Ее производство не загрязняет окружающую среду, не выделяет углерод, и у общества нет предубеждений против нее. Если мы решим инфраструктурные проблемы хранения солнечной энергии, то сможем использовать солнечный свет в качестве повсеместного и демократичного источника. В солнечном свете, который падает на поверхность планеты в течение часа, больше энергии, чем во всем ископаемом топливе, потребляемом за год. И, что более важно, если хотим достичь энергетического изобилия, мы должны выбирать технологии, которые можно масштабировать – и желательно, чтобы они масштабировались по экспоненте. Солнечная энергия отвечает всем этим критериям. По словам Трэвиса Брэдфорда, исполнительного директора Carbon War Room и президента Прометеевского института (The Prometheus Institute) – двух некоммерческих организаций, занимающихся в том числе вопросами глобального потепления, – стоимость солнечной энергии падает на 5–6 % ежегодно, а производство растет на 30 % в год. Поэтому, когда критики говорят, что солнечная энергия в данный момент составляет едва 1 % в нашем общем энергетическом потреблении, это типичный пример линейного мышления в экспоненциальном мире. Посмотрите на сегодняшний 1 % в перспективе 30-процентного ежегодного роста – и вы увидите, что через 18 лет Солнце покроет 100 % всех наших энергетических потребностей.
И рост не заканчивается на этом месте – дальше начинается самое интересное. Спустя еще десять лет – то есть через 28 лет с сегодняшнего момента – при этих же темпах мы будем покрывать с помощью солнечной энергии 1500 % сегодняшних глобальных энергетических потребностей. И, что еще важнее, параллельно росту производства технологии заставят каждый электрон работать всё более эффективно. Будут ли это умные электросети, в два-три раза более эффективные, чем сегодня, или инновации вроде светодиодных ламп, снижающих количество энергии, необходимой для освещения комнаты, со ста до пяти ватт, – в любом случае впереди нас ждут серьезные изменения. Комбинация эффективности, снижающей наше потребление, и инноваций, увеличивающих наше производство, в конце концов действительно может дать неисчерпаемое изобилие энергии.
Но что же мы будем делать с этим неисчерпаемым изобилием? Конечно, Меткаф уже какое-то время об этом думает. «Во-первых, – предлагает он, – почему бы не снизить во много раз цены на энергию – и таким образом значительно способствовать экономическому росту на планете? Во-вторых, мы можем по-настоящему раздвинуть космические границы – использовать эту энергию, чтобы доставлять миллионы людей на Луну и Марс. В-третьих, с таким количеством энергии мы можем обеспечить для каждого человека на Земле американские стандарты свежей, чистой воды. И в-четвертых, как насчет использования этой энергии, чтобы удалить CO2 из атмосферы Земли? Я знаю профессора Университета Калгари, доктора Дэвида Кита, который разработал такое устройство. Если объединить его с дешевой энергией, мы сможем даже решить проблему глобального потепления! Уверен, что список впечатляющих примеров этим не исчерпывается».
Чтобы посмотреть, какой длины мог бы быть этот список, я запостил в «Твиттере» вопрос, который задал Меткафу. Мой фаворит – ответ пользователя BckRogers, который написал: «Вся сегодняшние конфликты – из-за энергетического потенциала или ресурсов. Так что конец войнам». Я не уверен, что всё настолько просто, но, если мы как следует обдумаем то, что обсуждалось в этой главе, одно покажется нам бесспорным: скоро мы сами всё узнаем.