Книга: КЭД – странная теория света и вещества
Назад: Лекция 3. Электроны и их взаимодействия
Дальше: Послесловие к зарубежному изданию 2006 года

Лекция 4. Нерешенные вопросы

Эта лекция будет состоять из двух частей. Сначала я собираюсь поговорить о проблемах, связанных с квантовой электродинамикой как таковой, предположив, что на свете нет ничего, кроме электронов и фотонов. Затем я расскажу об отношении квантовой электродинамики ко всей остальной физике.
Вам может показаться, что наиболее шокирующая черта квантовой электродинамики – шаткая концепция амплитуд – указывает на какие-то проблемы, какое-то неблагополучие! Однако физики возятся с амплитудами уже больше пятидесяти лет и очень к ним привыкли. Более того, все новые частицы и новые наблюдаемые нами явления полностью соответствуют предсказаниям, которые можно вывести из этой концепции амплитуд, где вероятность события равна квадрату результирующей стрелки, длина которой определяется при помощи всяких хитрых способов соединения стрелок (с интерференцией и т. д.). Так что в экспериментальном отношении концепция амплитуд не подлежит никакому сомнению. Вы можете сколько угодно испытывать философское беспокойство относительно того, что же все-таки значат амплитуды! (если они действительно что-то значат), но поскольку физика – наука экспериментальная, а концепция согласуется с экспериментом, она нас пока устраивает.
В квантовой электродинамике имеется целый ряд проблем, связанных с усовершенствованием методов суммирования всех стрелок – разнообразных, используемых в разных обстоятельствах приемов, на изучение которых студенты тратят три или четыре года. Это проблемы техники вычислений, и я не собираюсь их здесь обсуждать. Здесь речь идет просто о постоянном улучшении методов расчета в применениях теории к различным явлениям.
Но имеется одна дополнительная проблема, характерная именно для квантовой электродинамики как таковой, для решения которой потребовалось двадцать лет. Она связана с идеальными электронами и фотонами и числами п и j.
Если бы электроны были идеальными и летели от одной точки к другой во времени и пространстве исключительно по прямой (как показано слева на рис. 77), тогда не было бы проблем: п было бы просто массой электрона, которую можно определить при помощи наблюдений, а j – его «зарядом» (амплитудой взаимодействия электрона и фотона). Его также можно было бы определить экспериментально.
Но таких идеальных электронов не существует. Масса, которую мы наблюдаем в лаборатории, – это масса реального электрона, который время от времени испускает и поглощает свои собственные фотоны. Поэтому она зависит от амплитуды взаимодействия j. И заряд, который мы наблюдаем, отвечает взаимодействию между реальным электроном и реальным фотоном (который может время от времени образовывать электрон-позитронную пару) – и, следовательно, зависит от Е(А – В), в свою очередь включающей в себя п (см. рис. 78). Так как эти и все другие взаимоисключающие возможности влияют на массу и заряд электрона, то экспериментально измеренная масса m и экспериментально измеренный заряд е отличаются от чисел п и j, которыми мы пользуемся в наших расчетах.
Рис. 77. При вычислении амплитуды попадания электрона из одной точки пространства-времени в другую для прямого пути мы используем формулу Е(А – В). (Затем мы вычисляем «поправки», учитывающие испускание и поглощение одного или нескольких фотонов.) Е(А – В) зависит от (Х2– Х1), (Т2– Т1) и числа п, которое мы должны подставить в формулу, что-бы получился правильный ответ. Число п называется «массой покоя» «идеального» электрона, оно не может быть измерено экспериментально, так как масса настоящего электрона m учитывает все «поправки». Для преодоления трудностей, возникающих при вычислении входящего в Е(А – В) числа п, по-требовалось двадцать лет.
Если бы существовала определенная математическая связь между п и j, с одной стороны, и m и е – с другой, то все еще не было бы никаких проблем. Мы бы просто вычислили, с каких величин n и j надо начинать, чтобы в конце получились наблюдаемые значения т и е. (Если бы наши вычисления не совпали с т и е, мы подгоняли бы п и j до тех пор, пока все не совпало бы.)
Рис. 78. Таинственное число е – экспериментально измеряемая амплитуда взаимодействия электрона с фотоном – учитывает все «поправки» для распространения фотона из одной точки пространства-времени в другую, две из этих поправок изображены на рисунке. При расчетах нам необходимо значение j, которое не учитывает этих поправок, а учитывает лишь движение фотона, прямо летящего из одной точки в другую. Сложности, возникающие при вычислении j, аналогичны возникающим при вычислении п.

 

Посмотрим, как мы на самом деле вычисляем т. Мы пишем ряд слагаемых, подобный ряду для магнитного момента электрона: первый член не содержит взаимодействий – это просто Е(А – В) – и представляет собой прямолинейное распространение идеального электрона из одной точки пространства-времени в другую. Второй член содержит два взаимодействия и учитывает испускание и поглощение фотона. Затем идут члены с четырьмя, шестью, восемью взаимодействиями и т. д. (Некоторые из таких «поправок» показаны на рис. 77.)
При вычислении членов, содержащих взаимодействия, мы должны рассматривать (как обычно) все возможные точки, где может произойти взаимодействие, включая и такие случаи, когда точки, где происходит взаимодействие, налезают одна на другую, так что расстояние между ними равно нулю. Проблема заключается в том, что, когда мы пытаемся учесть все расстояния вплоть до нулевых, выражение «рушится», давая бессмысленные ответы вроде бесконечностей. Когда квантовая электродинамика только появилась, это вызывало много тревог. Какую бы задачу ни пытались решить, получали бесконечность. (Чтобы быть математически последовательными, необходимо иметь возможность доходить до нулевых расстояний, но именно здесь не получается осмысленных значений для п и j. В этом и состоит проблема.)
А что, если не учитывать все возможные расстояния между точками взаимодействия вплоть до нулевых, а оборвать вычисления на очень малом расстоянии – скажем, 10–30 см? Это в миллиарды и миллиарды раз меньше того, что может быть исследовано экспериментально в настоящее время – 10–16 см. В этом случае получаются определенные значения для п и j, такие, что вычисляемая масса совпадает с экспериментально наблюдаемой массой т и вычисляемый заряд совпадает с экспериментально наблюдаемым зарядом е. Но здесь ловушка: если кто-то другой обрывает свои вычисления на другом расстоянии, скажем, на 10–40 см, ему приходится брать другие значения п и j,чтобы получить такие же т и е!
Через 20 лет после возникновения квантовой электродинамики, в 1949 г., Ханс Бете и Виктор Вайскопф заметили следующее. Если два человека, основываясь в своих вычислениях на одинаковых значениях т и е, обрывают расчеты для п и j на разных расстояниях, а затем, используя соответствующие, но различные значения п и j, решают какую-то другую задачу (учитывая стрелки для всех поправок), ответы получаются практически одинаковыми! На самом деле, чем ближе к нулевому расстоянию обрывались вычисления п и j, тем лучше совпадали решения этой другой задачи! Швингер, Томонага и я независимо придумали, как проводить конкретные расчеты, и подтвердили это (мы получили за это Нобелевскую премию). Наконец-то люди смогли вычислять при помощи квантовой электродинамики!
Итак, получается, что единственное, что зависит от малых расстояний между точками взаимодействия, – это значения теоретических величин п и j, которые экспериментально никогда не наблюдаются. Все остальное – все, что можно наблюдать, от малых расстояний, по-видимому, не зависит.
Уловка, при помощи которой мы находим п и j, имеет специальное название – «перенормировка». Но каким бы умным ни было слово, я назвал бы ее дурацким приемом! Необходимость прибегнуть к такому фокусу-покусу не позволила нам доказать математическую самосогласованность квантовой электродинамики. Удивительно, что до сих пор самосогласованность этой теории не доказана тем или иным способом: я подозреваю, что перенормировка математически незаконна. Но что очевидно, это то, что у нас нет хорошего математического аппарата для описания квантовой электродинамики: такая куча слов для описания связи между п, j и т, е – это не настоящая математика.
С наблюдаемой константой связи е – амплитудой поглощения или излучения реального фотона реальным электроном – связан очень глубокий и красивый вопрос. Число е, в соответствии с экспериментами, равно примерно – 0,08542455. (Мои друзья-физики не узнают этого числа, они привыкли пользоваться обратной величиной его квадрата, 137,03597 с погрешностью примерно 2 в последнем знаке. С тех пор, как его открыли свыше пятидесяти лет назад, это число остается тайной. Все хорошие физики-теоретики выписывают это число на стене и мучаются из-за него.)
Вам, конечно, хотелось бы узнать, как появляется это число: выражается ли оно через π, или, может быть, через основание натуральных логарифмов? Никто не знает. Это одна из величайших проклятых тайн физики: магическое число, которое дано нам и которого человек совсем не понимает. Можно было бы сказать, что это число написала «рука Бога», и «мы не знаем, что двигало Его карандашом». Мы знаем, что надо делать, чтобы экспериментально измерить это число с очень большой точностью, но мы не знаем, что делать, чтобы получить это число на компьютере – не вводя его туда тайно!
Хорошая теория гласила бы, что е равно, скажем, √3, деленному на 2π2. Время от времени появлялись предположения, чему равно е, но все они оказались бесполезными. Сначала Артур Эддингтон чисто логически доказал, что число, которое так любят физики, должно быть равно в точности 136 (это тогдашнее экспериментальное значение). После того, как более точные эксперименты показали, что число ближе к 137, Эддингтон обнаружил небольшую ошибку в своих рассуждениях и снова чисто логически доказал, что число равно в точности 137! Время от времени кто-нибудь замечает, что некоторая комбинация π, е (основания натуральных логарифмов), двоек и пятерок образует таинственную константу взаимодействия. Но знали бы те, кто любит играть с арифметикой, как многочисел можно получить, комбинируя π, е и т. д. Вот и следуют сквозь всю историю современной физики одна статья за другой с выводом е с точностью до нескольких значащих цифр – и только для того, чтобы не сойтись с результатами экспериментов после новых, более тщательных измерений.
Хотя мы и вынуждены сегодня прибегать к дурацкому приему для вычисления j, возможно, когда-нибудь будет найдена законная математическая связь между j и е. Это будет означать, что таинственным числом является j, а из него вытекает е. В таком случае, без сомнения, возникнет новая серия статей о том, как вычислить j, так сказать, на пальцах – что j равно 1/4 π или что-нибудь в этом роде.
Вот и все проблемы, связанные с квантовой электродинамикой.
Когда я планировал эти лекции, я собирался сосредоточиться только на очень хорошо известном нам разделе физики, описать его со всей полнотой и больше ничего не говорить. Но я профессор (а это означает, что я не способен вовремя остановиться). Поэтому теперь, когда дело сделано, я не могу устоять против искушения рассказать вам немного об остальной физике.
Во-первых, я должен сразу же сказать, что вся остальная физика проверена далеко не так хорошо, как электродинамика. Часть из того, о чем я собираюсь рассказать, – хорошие догадки, часть – не до конца разработанные теории, часть – чистая спекуляция. Так что эта лекция будет выглядеть довольно путано по сравнению с предыдущими. Тем не менее оказывается, что структура КЭД служит отличной основой для описания других явлений в остальной физике.
Я начну с рассказа о протонах и нейтронах, из которых состоят атомные ядра. После открытия протонов и нейтронов считалось, что они простые частицы (простые в том смысле, что их амплитуда попадания из одной точки в другую описывается формулой Е(А – В) с другим значением п). Но очень скоро стало ясно, что это отнюдь не так. Например, магнитный момент протона, если его рассчитывать так же, как магнитный момент электрона, был бы близок к 1. Но на самом деле экспериментально получается нечто нелепое – 2,79! Поэтому быстро осознали, что внутри протона происходит что-то, не объясняемое уравнениями квантовой электродинамики. Нейтрон, если он действительно нейтрален, не должен бы вообще взаимодействовать с магнитным полем. Но у него оказался магнитный момент – примерно 1,93! Так что уже давно было известно, что и в нейтроне происходит нечто сомнительное.
Существовала и еще одна проблема: что связывает протоны и нейтроны внутри ядра? Сразу стало ясно, что это не может быть обмен фотонами, так как силы, стягивающие ядро, слишком велики. (Энергия, необходимая для разрушения ядра, во столько же раз превосходит необходимую для выбивания электрона из атома, во сколько атомная бомба разрушительнее динамита: при взрыве динамита перераспределяются электроны, тогда как при взрыве атомной бомбы перераспределяются протоны и нейтроны.)
Для того чтобы узнать, какая сила удерживает ядро, было поставлено много экспериментов, в которых протоны со все более возрастающими энергиями сталкивались с ядрами. Ожидалось, что вылетать будут только протоны и нейтроны. Но когда энергии стали достаточно большими, начали вылетать новые частицы. Сначала появились пионы, потом лямбда, сигма, ро-частицы, и не хватило алфавита. Тогда появились частицы с числами (их массами): например, сигма-1190 и сигма-1386. Скоро стало ясно, что число частиц в мире не ограничено и зависит от энергии, потраченной на разрушение ядра. В настоящее время открыто более четырехсот таких частиц. Мы не можем смириться с тем, что существуют четыре сотни элементарных частиц – это слишком сложно!
Великие изобретатели вроде Мёрри Гелл-Манна чуть с ума не посходили, пытаясь вывести правила, которым подчиняются эти частицы, и в начале 70-х годов они создали теорию сильных взаимодействий (или «квантовую хромодинамику»), в которой основными действующими лицами являются частицы, получившие название «кварков». Все частицы, состоящие из кварков, разделяются на два класса: одни – типа протона и нейтрона – состоят из трех кварков (они получили ужасное название «барионы»), другие – например пион – состоят из кварка и антикварка (они называются «мезонами»).

 

Рис. 79. Наша таблица частиц мира начинается с частиц «со спином 1/2». Это электрон (с массой 0,511 МэВ), и кварки двух «ароматов» u и d (с массой у каждого порядка 10 МэВ). Электрон и кварки имеют «заряд» (т. е. взаимодействуют с фотонами), равный (в единицах константы взаимодействия j) – 1/3, и +2/3.

 

Позвольте показать вам принятую сейчас таблицу фундаментальных частиц (см. рис. 79). Я начну с частиц, распространяющихся от точки к точке в соответствии с формулой Е(А – В), которая видоизменена, как и в случае электрона, чтобы учесть поляризацию. Они называются частицами «со спином ½». Первая из этих частиц – электрон, и его массовое число 0,511 (в единицах, которые мы все время используем – МэВ).
Под электроном я оставлю свободное место (оно будет занято позднее), а еще ниже впишу кварки двух типов – d и и. Масса этих кварков точно не известна; предполагается, что у каждого она порядка 10 МэВ. (Нейтрон немного тяжелее протона, что вроде бы подразумевает – и вы это скоро увидите – что d-кварк несколько тяжелее, чем и-кварк.)

 

Рис. 80. Все частицы, состоящие из кварков, принадлежат к од-ному из двух классов. Одни состоят из кварка и антикварка, а другие из трех кварков. Самые известные из этих последних – протон и нейтрон. Заряды u-кварка и d-кварка комбинируются в +1 для протона и в 0 для нейтрона. Тот факт, что протон и нейтрон состоят из движущихся внутри них заряженных частиц, дает ключ к пониманию того, почему у протона магнитный момент превышает 1, а у, казалось бы, нейтрального нейтрона не равен нулю.

 

Вслед за каждой частицей я выписываю ее заряд или константу взаимодействия в единицах – j. Это число, взятое с обратным знаком, характеризует взаимодействие с фотоном. Таким образом, получается, что заряд электрона равен –1, что соответствует традиционному значению, введенному еще Бенджамином Франклином. Для d-кварка амплитуда взаимодействия с фотоном равна – ⅓, для и-кварка – +⅔. (Если бы Бенджамин Франклин знал о кварках, он мог бы по крайней мере сделать заряд электрона равным –3!)
Заряд протона равен +1, нейтрона – нулю. После некоторого подбора чисел вы можете видеть, что протон, состоящий из трех кварков, должен содержать два и-кварка и один d-кварк. А нейтрон, также состоящий из трех кварков, должен содержать два d-кварка и один и-кварк (см. рис. 80).
Что удерживает вместе кварки? Может быть, летающие взад и вперед фотоны? (d-кварк имеет заряд – ⅓, а u-кварк – +⅔, поэтому они, как и электроны, испускают и поглощают фотоны.) Нет, электрические силы слишком слабы для этого. Тогда придумали нечто другое, что летает взад и вперед и удерживает кварки вместе; это нечто назвали «глюоны». Глюоны, как и фотоны, еще пример частиц «со спином 1». Амплитуда попадания глюона из точки в точку определяется точно такой же формулой, что и для фотонов, Р(А – В). Амплитуда излучения или поглощения глюонов кварками равна таинственному числу g, которое значительно превосходит j (см. рис. 81).
Диаграммы, изображающие обмен кварков глюонами, очень похожи на картинки, на которых мы изображали обмен электронов фотонами (см. рис. 82). Настолько похожи, что вы можете сказать, что у физиков нет воображения – теория сильных взаимодействий просто копирует квантовую электродинамику! И вы правы: так и есть – но с некоторыми особенностями.

 

Рис. 81. «Глюоны» удерживают вместе кварки, составляющие протоны и нейтроны, и косвенно ответственны за притяжение протонов и нейтронов друг к другу в атомном ядре. Глюоны удерживают кварки силами, значительно превышающими электрические. Константа взаимодействия с глюонами g значительно превосходит j. Поэтому вычислять диаграммы глюонными взаимодействиями гораздо труднее, и наилучшая точность, на которую пока можно надеяться, не превышает 10 %.

 

Рис. 82. Диаграмма, изображающая два кварка, которые обмениваются глюоном. Она на-столько похожа на диаграмму для двух электронов, обменивающихся фотоном, что вы можете подумать, что физики просто скопировали квантовую электродинамику, строя теорию «сильных взаимодействий», удерживающих кварки внутри протонов и нейтронов. Да, так оно и есть – почти.

 

У кварков имеется добавочный тип поляризации, не связанный с геометрией. Простаки-физики, не способные возвыситься до изобретения прекрасных греческих слов, назвали этот тип поляризации неудачным словом «цвет». Этот «цвет» не имеет никакого отношения к цвету в обычном смысле. В данный момент времени кварк может находиться в одном из трех состояний, или «цветов» – К, 3 или С (догадываетесь, что означают эти сокращения?). При поглощении или испускании глюонов «цвет» кварка может измениться. Глюоны бывают восьми различных сортов, в зависимости от того, какие «цвета» они связывают. Например, если красный кварк становится зеленым, он испускает красно-антизеленый глюон – глюон, который забирает у кварка красный цвет и дает зеленый («антизеленый» означает, что глюон переносит зеленый цвет в противоположном направлении). Такой глюон может быть поглощен зеленым кварком, который станет после этого красным (см. рис. 83). Имеются восемь различных глюонов, например, красно-антикрасный, красно-антисиний, красно-антизеленый и т. д. (вы могли бы подумать, что их должно быть девять, но по техническим причинам один отсутствует). Теория не слишком сложная. Общее правило гласит: глюон взаимодействует с тем, что имеет «цвет», – требуется лишь немного бухгалтерии, чтобы проследить, куда переносятся «цвета».
Это правило создает, однако, интересную возможность: глюоны могут взаимодействовать с другими глюонами (см. рис. 84). Например, зелено-антисиний глюон, встретившись с красно-антизеленым, превращается в красно-антисиний глюон. Глюонная теория очень проста – вы рисуете диаграмму и расставляете «цвета». Величины взаимодействий во всех диаграммах определяются глюонной константой связи g.
Формально глюонная теория не сильно отличается от квантовой электродинамики. Ну а как она соотносится с экспериментом? Например, как наблюдаемая величина магнитного момента протона соотносится с теоретической?

 

Рис. 83. Глюонная теория отличается от электродинамики тем, что глюоны взаимодействуют с «цветными» частицами (которые могут находиться в одном из трех возможных состояний – «красном», «зеленом» и «синем»). Здесь красный и-кварк пре-вращается в зеленый, испуская красно-антизеленый глюон, поглощаемый затем зеленым кварком, который превращается в красный. (Если «цвет» переносится вспять во времени, к его названию добавляется приставка «анти»).

 

Рис. 84. Поскольку глюоны сами «окрашены», они могут взаимодействовать друг с другом. На рисунке показано, как зелено-антисиний глюон взаимодействует с красно-антизеленым и получается красно-антисиний глюон. Глюонную теорию лег-ко понять – вы должны просто следить за «цветами».

 

Эксперименты очень точны – они показывают, что магнитный момент равен 2,79275. Теория же дает в лучшем случае 2,7±0,3 – если вы достаточно оптимистично оцениваете точность своих расчетов. То есть погрешность равна 10 %, что в 10 000 раз ниже точности эксперимента! У нас имеется простая, четкая теория, которая должна объяснять все свойства протонов и нейтронов, но мы не можем ничего посчитать при помощи этой теории, потому что математика слишком сложна для нас. (Вы можете догадаться, над чем я работаю, но у меня ничего не получается.) Причина, по которой мы ничего не можем посчитать с приличной точностью, заключается в том, что константа связи для глюонов gзначительно превосходит константу связи для электронов. Диаграммы с двумя, четырьмя и даже шестью взаимодействиями не просто маленькие поправки к основной амплитуде – они вносят существенный вклад, которым нельзя пренебречь. Поэтому получается так много стрелок для различных вариантов, что мы не можем упорядочить их разумным образом и найти, чему равна результирующая стрелка.
В книгах говорится, что наука проста: вы строите теорию, сравниваете ее с экспериментом, и если теория не работает, вы ее отбрасываете и строите новую теорию. Здесь у нас есть четкая теория и сотни экспериментов, но мы не можем их сравнить! В истории физики такого положения еще не бывало. Мы временно оказались взаперти и не можем выбраться, пока не придумаем метод вычисления. Нас «завалило» всеми этими стрелочками, как снежным сугробом.

 

Рис. 85. Когда нейтрон превращается в протон (этот процесс называется бета-распадом), единственное, что изменяется – это «аромат» одного из кварков, d-кварк превращается в w-кварк, что сопровождается вылетом электрона и антинейтрино. Такой процесс происходит довольно медленно, поэтому предположили, что существует промежуточная частица (названная промежуточным W-бозоном) с очень большой массой (порядка 80 000 МэВ) и зарядом –1.

 

Несмотря на сложности вычислений, мы качественно понимаем многое в квантовой хромодинамике (науке о сильных взаимодействиях кварков и глюонов). Наблюдаемые нами объекты, состоящие из кварков, «бесцветны»: группы из трех кварков содержат по одному кварку каждого «цвета», а кварк-антикварковые пары имеют одинаковую амплитуду быть красно-антикрасными, зелено-антизелеными или синеантисиними. Мы также понимаем, почему кварки никогда не образуются по отдельности – почему мы видим (какой бы ни была энергия протона, ударяющегося о ядро), что вылетают не отдельные кварки, а струи мезонов и барионов (кварк-антикварковых пар и групп из трех кварков).
Квантовая хромодинамика и квантовая электродинамика – это еще не вся физика. Согласно этим теориям кварк не может изменить «аромат»: u-кварк всегда остается u-кварком, d-кварк всегда остается d-кварком. Но Природа иногда поступает по-другому. Существует медленная форма радиоактивности, бета-распад (утечки такой радиоактивности боятся на ядерных реакторах), при которой нейтрон превращается в протон. Поскольку нейтрон состоит из двух d-кварков и одного и-кварка, а протон – из двух и-кварков и одного d-кварка, то один из d-кварков нейтрона превращается в и-кварк (см. рис. 85). Вот как это происходит: d-кварк излучает новую частицу, W-бозон, подобную фотону, которая взаимодействует с электроном и другой новой частицей, антинейтрино (нейтрино, движущимся вспять во времени). Нейтрино – это еще одна частица со спином ½ (как электрон и кварки), но оно не имеет массы и заряда (т. е. не взаимодействует с фотонами). Оно не взаимодействует также с глюонами, а только с W-бозонами (см. рис. 86).
W-бозон является частицей со спином 1 (как фотон и глюон), он изменяет «аромат» кварков и переносит их заряд: d-кварк с зарядом – ⅓ превращается в u-кварк с зарядом +⅔ – разница зарядов равна –1. («Цвет» кварка при этом не меняется.) Поскольку W – бозон переносит заряд –1 (и его античастица W+ переносит заряд +1), он взаимодействует также с фотонами. Бета-распад протекает гораздо медленнее, чем взаимодействие фотонов и электронов, поэтому считается, что W-бозон в отличие от фотона и глюона должен иметь очень большую массу (порядка 80 000 МэВ). Сам по себе W-бозон не наблюдается, поскольку для «выбивания» частицы с такой большой массой требуется очень большая энергия.

 

Рис. 86. С одной стороны, W-бозон взаимодействует с элек-троном и нейтрино, и с другой – с d-кварком и u-кварком

 

Есть и другая частица, которую можно считать нейтральным W-бозоном, она называется «Z 0-бозон». Z 0-бозон не меняет заряд кварка, но взаимодействует с d-кварком, u-кварком, электроном или нейтрино (см. рис. 87). Это взаимодействие носит вводящее в заблуждение название «нейтральные токи». Его открытие несколько лет назад вызвало большое волнение.

 

Рис. 87. Когда ни у одной из частиц заряд не меняется, W-бозон тоже не заряжен (он в этом случае называется Z0-бозоном). Такие взаимодействия называются «нейтральными токами». Здесь показаны две возможности.

 

Теория W-бозонов строга и изящна, если вы учитываете трехчастичное взаимодействие между тремя типами W-бозонов (см. рис. 88). Наблюдаемая константа связи W-бозонов близка к электромагнитной: лежит в окрестности j. Поэтому не исключено, что три W-бозона и фотон являются разными сторонами одного явления. Стивен Вайнберг и Абдус Салам попробовали объединить в единую квантовую теорию квантовую электродинамику и так называемые «слабые взаимодействия» (взаимодействия через W-бозоны). И они это сделали. Но даже просто посмотрев на полученные ими результаты, вы, так сказать, увидите белые нитки. Совершенно очевидно, что фотон и три W-бозона каким-то образом связаны, но на современном уровне понимания эта связь ясно не видна: все еще мешают «швы» в теориях. Их до сих пор не удалось разгладить и сделать эту связь красивее и, значит, наверное, правильнее.

 

Рис. 88. Между W-, его античастицей W+ и нейтральным W-бозоном (Z0-бозоном) возможно взаимодействие. Константа связи для взаимодействия между W-бозонами ле-жит в окрестности j. На этом основано предположение, что W-бозоны и фотоны, возможно, представляют собой разные стороны одного и того же явления.

 

Итак, квантовая теория описывает три основных типа взаимодействий: «сильное взаимодействие» кварков и глюонов, «слабое взаимодействие» W-бозонов и «электрическое взаимодействие» фотонов. Единственные имеющиеся (в соответствии с этой теорией) частицы – это кварки (с «ароматами» d и и, трех «цветов» каждый), глюоны (восемь комбинаций красного, зеленого и синего), W-бозоны (с зарядами ±1 и 0), нейтрино, электроны и фотоны – примерно двадцать различных частиц шести различных типов (плюс их античастицы). Это не так уж плохо – примерно двадцать различных частиц, но только это еще не все.
По мере того как ядра бомбардировали протонами все более высоких энергий, продолжали возникать все новые частицы. Одной из таких частиц был мюон, в точности совпадающий с электроном во всех отношениях, за исключением значительно большей массы –105,8 МэВ. Это примерно в 206 раз превосходит массу электрона, равную 0,511 МэВ. Как будто Бог захотел попробовать для массы другое число! Все свойства мюона полностью описываются электродинамической теорией: та же константа связи j, та же Е(А – В), вы просто подставляете другое значение n.

 

Рис. 89. При бомбардировке ядра протонами все более и более высокой энергии возникают новые частицы. Одна из них – мюон, или тяжелый электрон. Мюонные взаимодействия описываются той же теорией, что и электронные, с той только разницей, что вы просто подставляете большее значение для п в формулу Е(А – В). Магнитный момент мюона должен не-сколько отличаться от магнитного момента электрона, поскольку, когда электрон излучает фотон, который затем распадается на электрон-позитронную или мюонантимюонную пару, массы частиц пары равны или превышают массу электрона. С другой стороны, когда мюон излучает фотон, распадающийся на позитрон-электронную или мюон-антимюонную пару, массы частиц пары не превышают массу мюона. Это не-большое различие подтверждается экспериментами.

 

Так как мюон примерно в 200 раз тяжелее электрона, «стрелка часов» для мюона вращается в 200 раз быстрее, чем для электрона. Это позволило нам проверить, продолжает ли квантовая электродинамика соответствовать эксперименту на расстояниях, в 200 раз меньших, чем те, на которых мы могли проверить ее до сих пор. Хотя эти расстояния все еще более чем в 1080 раз превосходят такие, на которых теорию подстерегают неприятности из-за бесконечностей (см. сноску на с. 146).

 

Рис. 90. У W-бозона имеется амплитуда излучения мюона вместо электрона. В этом случае место электронного нейтрино занимает мюонное нейтрино.

 

Мы уже знаем, что электрон может взаимодействовать с W-бозоном (см. рис. 85). При превращении d-кварка в u-кварк с испусканием W-бозона может ли W-бозон взаимодействовать с мюоном вместо электрона? Да (см. рис. 90). А антинейтрино? Если W-бозон взаимодействует с мюоном, частица, которая называется мюонным нейтрино, занимает место обычного нейтрино (которое мы теперь будем называть электронным нейтрино). Поэтому теперь в нашей таблице частиц вслед за электроном и нейтрино появляются две дополнительные частицы: мюон и мюонное нейтрино.
А кварки? Уже очень давно известны частицы, которые должны состоять из более тяжелых кварков, чем u и d. Поэтому в список фундаментальных частиц был включен третий кварк, названный s-кварком (от strange – странный). Масса s-кварка равна примерно 200 МэВ (сравните с 10 МэВ в случае и– и d-кварков).
Много лет мы считали, что у кварков есть только три «аромата» – и, d и s, но в 1974 г. была открыта новая частица, названная пси-мезоном, которую не удалось составить из этих трех кварков. Имелся очень хороший теоретический аргумент, что должен существовать четвертый кварк, взаимодействующий с s-кварком при участии W-бозона так же, как u-кварк взаимодействует с d-кварком (см. рис. 91). «Аромат» этого кварка называется с, и у меня не хватит смелости объяснить, что означает с, но, возможно, вы читали об этом. Названия становятся все хуже и хуже!

 

Рис. 91. Природа как бы повторяет частицы со спином 1/2. Кроме мюона и мю-нейтрино, имеются два новых кварка – s и e – с такими же зарядами, но массами большими, чем у их двойников в следующем столбце.

 

Рис. 92. Итак, продолжаем! При еще более высоких энергиях началось новое повторение частиц со спином 1/2. Оно станет полным, если будет открыта частица со свойствами, означающими существование кварка нового аромата. Тем временем ведется подготовка к поискам нового повторения при еще более высоких энергиях. Что вызывает эти повторения – совершенно неизвестно.

 

Это появление частиц с повторяющимися свойствами, но с возрастающими массами – совершенно таинственно. Что значит это странное дублирование образцов? Как сказал профессор Исидор Раби, когда был открыт мюон: «Кто заказал это?»
В последнее время началось новое повторение списка. По мере перехода ко все более высоким энергиям начинает казаться, что Природа продолжает нагромождать эти частицы как бы с целью нас одурманить. Я должен рассказать вам о них, так как я хочу, чтобы вы увидели, каким сложным в действительности выглядит мир. Я ввел бы вас в заблуждение, создав впечатление, что если 99 % явлений в мире можно объяснить при помощи электронов и фотонов, то оставшийся 1 % явлений потребует только 1 % дополнительных частиц! На самом деле чтобы объяснить этот оставшийся 1 %, нам потребуется в десять или в двадцать раз больше дополнительных частиц.
Итак, продолжаем: при экспериментах с еще большими энергиями был обнаружен еще более тяжелый электрон, названный «тау», с массой порядка 1800 МэВ, как у двух протонов! Было сделано предположение о существовании тау-нейтрино. Кроме того, была обнаружена забавная частица, предполагающая существование кварка нового «аромата» – на сей раз это b-кварк (от beauty – прелесть), его заряд равен –⅓ (см. рис. 92). Теперь я предлагаю вам стать на мгновение первоклассными физиками-теоретиками и сделать одно предсказание: будет открыт новый аромат кварков, называемый___-кварком (от «___»), с зарядом ___и массой___МэВ, – мы, конечно, надеемся, что он действительно есть!
Тем временем ставятся эксперименты с целью посмотреть, не повторится ли цикл еще раз. В настоящее время построены машины для поисков еще более тяжелого электрона, чем тау. Если масса предполагаемой частицы равна 100 000 МэВ, они не смогут ее создать. Если порядка 40 000 МэВ, такая частица может быть создана.
Тайны, вроде этих повторяющихся циклов, делают работу физика-теоретика очень интересной: Природа задает нам такие чудесные загадки! Почему она повторяет электрон частицами, массы которых в 206 и 3640 раз больше?
Мне хотелось бы сделать одно последнее замечание, чтобы совершенно покончить с частицами. Когда, взаимодействуя с W-бозоном, d-кварк переходит в w-кварк, он может также с небольшой амплитудой перейти вместо этого в с-кварк. Когда w-кварк переходит в d-кварк, он может также с малой амплитудой перейти в s-кварк и с еще меньшей амплитудой перейти в b-кварк (см. рис. 93). Поэтому W-бозон немного все перекашивает и позволяет кваркам переходить из одного столбца таблицы в другой. Почему возникают в такой пропорции амплитуды перехода в другие типы кварков, совершенно неизвестно.
Вот и все, что касается остальной квантовой физики. Это чудовищная неразбериха, и вы можете сказать, что физика безнадежно запуталась. Но так казалось всегда. Природа всегда казалась безнадежно запутанной, но, продвигаясь вперед, мы различаем закономерности и сводим теории воедино; возникает какая-то ясность и все становится проще. Неразбериха, которую я вам сейчас продемонстрировал, значительно меньше, чем та, что была десять лет назад, когда мне пришлось бы рассказывать вам о четырехстах с лишним частицах. А подумайте о неразберихе в начале этого века, когда независимо существовали тепло, магнетизм, электричество, свет, рентгеновское и ультрафиолетовое излучения, показатели преломления, коэффициенты отражения и другие свойства различных веществ, которые мы с тех пор объединили в одну теорию – квантовую электродинамику.

 

Рис. 93. У d-кварка имеется небольшая амплитуда превращения вместо u-кварка в с-кварк, и у s-кварка имеется небольшая амплитуда превращения вместо с-кварка в w-кварк, причем в обоих случаях будет испускаться W-бозон. Мы видим, что W-бозон способен менять кварковый аромат из одного столбца таблицы в другой (см. рис. 92).

 

Я хотел бы подчеркнуть одно обстоятельство. Теории, посвященные остальной физике, очень похожи на квантовую электродинамику: все они описывают взаимодействие объектов со спином ½ (вроде электронов и кварков) с объектами, имеющими спин 1 (вроде фотонов, глюонов и W-бозонов), в рамках концепции амплитуд, согласно которой вероятность события равна квадрату длины стрелки. Почему все физические теории имеют столь сходную структуру?
Имеется несколько возможностей. Во-первых, причиной может служить ограниченное воображение физиков. Встретившись с новым явлением, мы пытаемся вогнать его в уже имеющиеся рамки – и только поставив достаточное количество экспериментов, обнаруживаем, что концы с концами не сходятся. Поэтому, если какой-нибудь дурак-физик во время лекции в Калифорнийском университете в 1983 г. говорит: «Вот так все устроено, и посмотрите, как удивительно похожи теории», это не значит, что в Природе все на самом деле так похоже, а значит, что физики только и были способны повторять одно и то же снова и снова.
Другая возможность состоит в том, что это на самом деле все одно и то же, что у Природы есть только один способ выражаться, и потому время от времени Она повторяет свой рассказ.
Третья возможность состоит в том, что все похожие явления – это на самом деле разные стороны одной и той же скрытой от нас большой картины, части которой, взятые по отдельности, кажутся разными, как пальцы на одной руке. Многие физики трудятся над созданием великой картины, объединяющей все в одну сверхсупермодель. Это восхитительная игра, но в настоящее время игроки никак не договорятся о том, что представляет собой эта великая картина. Я лишь немного преувеличу, если скажу, что в большинстве этих спекулятивных теорий не больше глубокого смысла, чем в вашем предсказании t-кварка, и я гарантирую, что они предсказывают массу t-кварка ничуть не лучше вас!
Например, кажется, что электроны, нейтрино, d-кварк и u-кварк чем-то похожи – действительно, как два первых, так и два вторых взаимодействуют с W-бозоном. В настоящее время считается, что кварк может менять только «цвет» и «аромат». Но, возможно, он способен превратиться в нейтрино, провзаимодействовав с какой-то неизвестной частицей. Хорошая идея. Что тогда будет? Это будет означать, что протоны нестабильны.
Кто-то придумывает теорию: протон нестабилен. Проводятся вычисления, которые показывают, что во Вселенной больше не будет протонов! Тогда начинают подгонять числа, повышают массу новой частицы и после больших усилий предсказывают, что протон будет жить чуть дольше, чем время, за которое, судя по последним экспериментальным данным, он не распадается.
Когда появляется новый эксперимент и проводятся более тщательные исследования протона, то, чтобы вывернуться, теориям приходится приспосабливаться. Самые последние эксперименты показали, что протон живет по крайней мере в пять раз дольше, чем могла допустить теория. И что, вы думаете, произошло? Феникс опять воскрес, с новой модификацией теории, которая требует еще более точной экспериментальной проверки. Распадается или не распадается протон, неизвестно. Доказать, что он не распадается, очень трудно.
Во всех этих лекциях я не обсуждал гравитацию. Причина этого заключается в крайней малости гравитационного взаимодействия между объектами: соответствующая сила между двумя электронами в 1 с 40 нулями раз слабее электрической (возможно, с 41 нулем). В веществе почти все электрические силы тратятся на удержание электронов вблизи ядра их атома, что создает точно уравновешенную смесь «плюсов» и «минусов». Но в случае гравитации имеется только сила притяжения, и она накапливается и накапливается по мере увеличения числа атомов, пока, наконец, дойдя до таких грандиозно больших масс, как наши собственные, мы не получаем возможность измерять действие гравитации – на планеты, на нас и т. д.
Из-за того что гравитационная сила настолько слабее всех других взаимодействий, в настоящее время невозможно провести эксперимент, достаточно тонкий, чтобы измерить какой-нибудь эффект, для объяснения которого потребовалась бы точность квантовой теории гравитации. И хотя нет способа экспериментальной проверки, существуют тем не менее квантовые теории гравитации, содержащие «гравитоны» (принадлежащие к новому типу поляризации, со спином 2) и другие фундаментальные частицы (некоторые со спином 3/2). Даже лучшая из этих теорий не может охватить всех тех частиц, которые мы находим, а изобретает множество частиц, которых мы не находим. Квантовые теории гравитации также имеют бесконечности в диаграммах со взаимодействиями, но «дурацкий прием», который позволяет избавиться от них в квантовой электродинамике, в случае гравитации не помогает. Поэтому у нас нет не только экспериментов для проверки квантовой теории гравитации, у нас нет также и разумной теории.
Во всем этом рассказе осталась одна особенно неудовлетворительная черта: не существует теории, адекватно объясняющей величины наблюдаемых масс частиц, т. Мы пользуемся этими числами во всех наших теориях, но не понимаем их – что они собой представляют или откуда они берутся. Я считаю, что с фундаментальной точки зрения это очень интересная и важная проблема.
Прошу извинить меня, если все эти размышления о новых частицах вас запутали, но я решил сделать более полным рассказ об остальной физике, чтобы показать вам, что характер законов – концепция амплитуд, диаграммы, которые изображают подлежащие вычислению взаимодействия, и т. д. – тот же, что и в квантовой электродинамике – нашем лучшем примере хорошей теории.

 

Примечание, сделанное при чтении корректуры в ноябре 1984 г.

 

С тех пор, как были прочитаны эти лекции, экспериментально обнаружены подозрительные события, делающие вероятным скорое открытие чего-то совершенно нового и неожиданного (и потому не упомянутого в этих лекциях). Это может быть еще одна частица или какое-то иное явление.

 

Примечание, сделанное при чтении корректуры в апреле 1985 г.

 

К данному моменту вышеупомянутые «подозрительные события» оказались ложной тревогой. Ситуация, несомненно, снова изменится к тому времени, когда вы будете читать эту книгу. В физике изменения происходят быстрее, чем в книгоиздательском деле.
Назад: Лекция 3. Электроны и их взаимодействия
Дальше: Послесловие к зарубежному изданию 2006 года