Книга: Медицинская микробиология, иммунология и вирусология
Назад: Глава 31 Приобретенный иммунитет. Формы иммунного ответа. Антитела
Дальше: Глава 33 Клеточные основы иммунитета. Органы иммунитета

Глава 32
Другие формы иммунного ответа. Реакции повышенной чувствительности

Действие антител проявляется немедленно и характеризуется специфичностью. Так, например, если в крови уже имеются антитоксины, то введенный токсин нейтрализуется сразу, как только с ним взаимодействует антитоксин. Соответственно введение иммунной сыворотки или γ-глобулина сразу же создает пассивный иммунитет против возбудителя или его токсина. Нейтрализация антителами возбудителей или их токсинов и обеспечивает состояние иммунитета к ним. Однако не во всех случаях антитела, образование которых индуцирует антиген, обусловливают невосприимчивость к нему. Иногда повторное введение некоторых антигенов, например сыворотки, приводит не к развитию состояния невосприимчивости, а, наоборот, вызывает повышение чувствительности к ней, которое проявляется в виде тяжелых реакций.
С. Рише и Г. Портье в 1902 г. высказали предположение, что такое повышение чувствительности к сыворотке обусловлено наличием в ней чужеродного белка. Своими опытами они показали, что первичное введение собакам экстрактов из актиний не вызывает у них каких-либо токсических проявлений. Однако повторное введение, сделанное через 2 – 9 нед., сразу же вызывало резкое ухудшение состояния собак. У них наблюдались слабость, нарушение дыхания, а некоторые собаки погибали. Смерть наступала даже в том случае, когда повторная доза была во много раз меньше первоначальной. С. Рише назвал эту реакцию анафилаксией (греч. ana – обратно, phylaxis – защита), т. е. состоянием беззащитности против данного яда. Сходные результаты были получены Г. П. Сахаровым в 1905 г. в опытах с повторным введением чужеродного сывороточного белка морским свинкам. Морские свинки, сенсибилизированные первичным введением лошадиной сыворотки, на ее повторное введение также отвечали резко повышенной чувствительностью, крайняя степень проявления которой получила название анафилактического шока. Особенностью этой формы повышенной чувствительности является немедленность ее проявления на повторное введение антигена.
В 1890 г. Р. Кох обнаружил другой тип реакций повышенной чувствительности. Он показал, что при подкожном введении больному туберкулезом туберкулина (антигенный препарат, представляющий собой фильтрат автоклавированной бульонной культуры возбудителя туберкулеза) через 6 – 12 ч на месте введения развивается туберкулиновая реакция: краснота, уплотнение, иногда припухлость. Максимального развития реакция достигает через 24 – 48 ч.
Таким образом, различают два типа повышенной чувствительности: гиперчувствительность немедленного и замедленного типов. Поскольку эти реакции на повторное введение антигена отличаются от обычных реакций иммунитета, они получили название аллергических (греч. allos – другой, ergo – реакция, действие).

Гиперчувствительность немедленного типа

К реакциям гиперчувствительности немедленного типа (ГЧН) относятся: сывороточная анафилаксия, лекарственная анафилаксия, сывороточная болезнь, сенная лихорадка, бронхиальная астма, крапивница и другие аллергические реакции, в том числе к таким аллергенам, как пыльца некоторых растений, красители, шерсть и т. п. В их основе лежат общие механизмы, которые лучше всего изучены при анафилаксии.
Реакции анафилаксии, как и другие реакции гиперчувствительности немедленного типа, являются иммунологически специфичными и проявляются в отношении того антигена, к которому организм сенсибилизирован. Для возникновения состояния сенсибилизации достаточно введения очень малых доз антигена (аллергена). В частности, первичная сенсибилизирующая доза лошадиной сыворотки для морской свинки составляет 0,000001 мл. Состояние повышенной чувствительности развивается через 7 – 14 дней после введения антигена и сохраняется месяцами и годами. Для его выявления вводят внутривенно вторую, разрешающую дозу антигена. Если разрешающую дозу ввести не внутривенно, а внутрикожно, то развивается местная анафилаксия (феномен Артюса). Она характеризуется появлением через 30 – 60 мин на месте введения отека и развитием гиперемии. В последующем воспалительный очаг уплотняется, подвергается некрозу и рубцеванию.
Реакция анафилаксии характеризуется следующими особенностями: иммунологической специфичностью, немедленностью проявления (анафилактический шок развивается через несколько минут после введения разрешающей дозы) и опосредованностью антителами. Доказательством ведущей роли антител в реакциях гиперчувствительности немедленного типа (ГЧН) является возможность переноса состояния повышенной чувствительности от сенсибилизированного донора с помощью его сыворотки или чистой фракции антител несенсибилизированному реципиенту. Такой пассивный перенос анафилаксии с помощью антител приводит к развитию у реципиента состояния повышенной чувствительности, которая может быть выявлена введением ему разрешающей дозы антигена. Другим доказательством роли антител в ГЧН является реакция Праустница – Кюстнера: если сыворотку человека, сенсибилизированного каким-то антигеном, ввести внутрикожно здоровому нормальному реципиенту, а затем ввести аллерген в это же место, то наступит характерная местная реакция ГЧН.
В развитии анафилаксии можно выделить следующие три стадии: 1) иммунологическую, 2) патохимическую и 3) патофизиологическую. Иммунологическая стадия, которая определяет специфичность анафилаксии, характеризуется взаимодействием антигена с антителом, фиксированным на клетках сенсибилизированного организма. Для патохимической стадии характерна активация протеолитических ферментов, в результате действия которых из клеток высвобождаются биологически активные вещества. В настоящее время известно более 30 таких веществ, участвующих в механизме развития анафилаксии, однако основная роль принадлежит гистамину, серотонину, брадикинину и лейкотриенам. Лейкотриены A, B, C, D, E – продукты липоксигеназного превращения арахидоновой кислоты – освобождаются тучными клетками, базофилами и тромбоцитами. Патофизиологическая стадия развивается в результате действия биологически активных веществ на различные системы органов, в особенности на гладкую мускулатуру. Наблюдающееся в результате такого воздействия сокращение гладких мышц определяет клиническую картину анафилактического шока у животных. В частности, у морских свинок поражается гладкая мускулатура бронхов, что ведет к развитию бронхиального спазма. У собак наблюдается спазм гладкой мускулатуры кишечника, у кроликов – спазм легочных артерий, у человека страдает сердечно-сосудистая система. К наиболее характерным симптомам анафилактического шока относятся: гипотония, учащение мочеиспускания и дефекации, отек, лейкопения, тромбоцитопения, снижение титра комплемента, понижение свертываемости крови и температуры тела.

Механизм анафилаксии

Основную роль в механизме анафилаксии и других реакций гиперчувствительности немедленного типа играет процесс взаимодействия с антигеном антител, фиксированных на клетках, которые в результате этого взаимодействия высвобождают биологически активные вещества. Клетками, способными высвобождать медиаторы данного типа повышенной чувствительности (гистамин, брадикинин и т. п.), являются мастоциты и базофилы. Мастоциты находятся в соединительной ткани почти всех органов. Свойством фиксироваться на тучных клетках и базофилах обладают антитела, относящиеся к классу IgE. Ранее, пока природа этих антител не была еще установлена, они получили название реагинов. Особенностью антител IgE является отсутствие у них способности фиксировать комплемент и проникать через плаценту. Полагают, что помимо участия в реакциях ГЧН, антителам IgE принадлежит определенная роль в формировании местного иммунитета.
Цитофильные свойства этих иммуноглобулинов связаны с наличием особых рецепторов, которые располагаются в области Fc-компонента молекулы антитела. Иногда это свойство (цитофильность) называют гомоцитотропностью, т. е. сродством к клеткам собственного вида, или гетероцитотропностью, когда это сродство проявляется по отношению к клеткам другого вида животного. У человека и у некоторых животных антитела, относящиеся к классу IgE, обладают гомоцитотропностью, а гетероцитотропностью – иммуноглобулины IgG-1, IgG-3, IgG-4.
В самом общем виде механизм анафилаксии может быть описан следующим образом. Введение сенсибилизирующей дозы антигена индуцирует образование специфических антител, в том числе относящихся к классу IgE. Благодаря своей цитофильности последние фиксируются на поверхности тучных клеток и базофилов. Этот процесс и лежит в основе сенсибилизации организма к данному антигену. Попадая повторно в организм, он распознается антителами, фиксированными на клетках, и быстро вступает во взаимодействие с ними. Следствием этого является активация протеаз клеток, в результате которой высвобождаются медиаторы, опосредующие патофизиологическую основу анафилактического шока.
Таким образом, одним из необходимых условий развития анафилаксии является наличие доступа антигена к антителам, фиксированным на клетках. Если в крови циркулирует достаточное количество антител, обладающих такой же специфичностью, но относящихся к другим классам иммуноглобулинов (IgG, IgM), они распознают и блокируют его активные центры. Такой нейтрализованный антиген уже не может взаимодействовать с антителами IgE, фиксированными на клетках, поскольку его детерминантные группы блокированы. В случае, если специфичных к данному антигену и свободно циркулирующих в крови антител мало, антиген беспрепятственно достигает клеток, на которых располагаются антитела IgE. Следовательно, для предотвращения реакции ГЧН необходимо индуцировать образование антител, которые бы препятствовали доступу соответствующего антигена к антителам, фиксированным на клетках, т. е. антител классов IgG и IgM.
Развитие анафилактического шока можно предупредить с помощью различных лекарственных препаратов, например атропина, димедрола, эфирного наркоза, а также других веществ с различным механизмом действия (сапонин, желчно-кислотные соли и т. п.). Вместе с тем установлено, что если животное благополучно перенесло анафилактический шок, оно утрачивает на некоторое время (2 – 3 нед.) чувствительность к данному антигену. Такое же состояние десенсибилизации может быть достигнуто путем введения сенсибилизированному животному небольших разрешающих доз специфического антигена. В связи с этим А. М. Безредка предложил для предупреждения сывороточного анафилактического шока перед введением большой дозы сыворотки вводить сначала небольшую ее часть (0,5 – 1,0 мл) подкожно или несколько более мелких, но постепенно возрастающих доз внутривенно с интервалом 15 – 30 мин.

Реакции гиперчувствительности замедленного типа

Этот тип гиперчувствительности возникает при многих инфекционных болезнях, например при туберкулезе, бруцеллезе, дизентерии, токсоплазмозе, некоторых гельминтозах, микозах и т. д., и выявляется с помощью соответствующих кожных реакций, которые служат специфическими диагностическими пробами. Состояние гиперчувствительности замедленного типа могут индуцировать различные лекарственные препараты, красители, антисептики и другие аллергены. К аллергенам органической и неорганической природы, имеющим низкую молекулярную массу, но обладающим способностью соединяться с белками кожи и слизистых оболочек (т. е. являющимся гаптенами), нередко возникает так называемая контактная аллергия. Сенсибилизация формируется в результате длительного контакта с такими веществами и проявляется в местных изменениях на коже и слизистых оболочках. Наиболее типичным примером повышенной чувствительности замедленного типа является аллергическая реакция кожи больных туберкулезом людей и животных на туберкулин. К реакциям гиперчувствительности замедленного типа относится также трансплантационный иммунитет.
Основные особенности гиперчувствительности замедленного типа. Гиперчувствительность замедленная (ГЧЗ), как и повышенная чувствительность немедленного типа, индуцируется веществами антигенной природы и отличается высокой иммунологической специфичностью, т. е. она проявляется только в отношении того антигена, который индуцировал ее развитие. В связи с этим кожные аллергические пробы, выявляющие эти состояния, имеют большое диагностическое значение. Основные отличия гиперчувствительности замедленного типа от повышенной чувствительности немедленного типа следующие.
Во-первых, местные и общие реакции, выявляющие гиперчувствительность замедленного типа, развиваются спустя значительно больший срок после введения антигена, чем в случае гиперчувствительности немедленного типа. В частности, кожные реакции в этом случае появляются через 6 – 8 ч и достигают максимального развития через 1 – 2 суток. Интенсивность ГЧЗ определяют по диаметру уплотненного участка ткани на поверхности кожи, лишенной волос. Таким образом, для реакции повышенной чувствительности замедленного типа характерно отсутствие эффекта немедленности.
Во-вторых, гистологическая картина местных проявлений гиперчувствительности замедленного действия отличается от таковой при повышенной чувствительности немедленного типа тем, что в очаге реакции преобладают лимфоциты и моноциты. В развитии кожной реакции, выявляющей гиперчувствительность немедленного типа, преобладающую роль играют полиморфно-ядерные лейкоциты.
В-третьих, гиперчувствительность замедленного типа не может быть передана пассивно от сенсибилизированного организма с помощью его сыворотки интактному (несенсибилизированному) организму, т. е. этот тип повышенной чувствительности не связан с антителами.
Главное отличие реакций гиперчувствительности замедленного типа от реакций гиперчувствительности немедленного типа заключается в том, что они опосредуются не антителами, а сенсибилизированными клетками – Т-лимфоцитами, т. е. лимфоцитами, которые прошли иммунологическое «обучение» в тимусе. Т-лимфоциты несут на своей поверхности различные специфические рецепторы, с помощью которых распознают самые различные чужеродные вещества, в том числе трансплантационные антигены, и способны с ними взаимодействовать. Все типы реакций гиперчувствительности замедленного действия характеризуются общностью иммунологических механизмов, в которых главными действующими агентами являются лимфоциты и продуцируемые ими гуморальные факторы. Опосредуемость этих реакций лимфоцитами подтверждается многими феноменами среди которых в первую очередь можно выделить следующие три.
1. Состояние повышенной чувствительности замедленного типа можно передать от донора другому организму, но только путем введения последнему от сенсибилизированного организма его лимфоцитов, а не антител. В отличие от пассивного, такой тип иммунного состояния, передаваемого не сывороткой, а лимфоцитами, получил название адоптивного (англ. adopt – присваивать), т. е. присвоенного. Например, если от сенсибилизированного туберкулином животного передать внутривенно или внутрибрюшинно лимфоидные клетки здоровому животному, то оно будет отвечать на введение туберкулина положительными кожными реакциями гиперчувствительности замедленного типа.
2. Реакции гиперчувствительности замедленного типа можно подавить или ослабить, если перед введением разрешающей дозы аллергена ввести антилимфоцитарную сыворотку.
3. С реакцией ГЧЗ хорошо коррелирует способность сенсибилизированных Т-лимфоцитов синтезировать различные медиаторы – лимфокины, в том числе фактор, ингибирующий миграцию макрофагов (ФИМ). Он образуется при стимуляции сенсибилизированных Т-лимфоцитов in vitro соответствующим антигеном. Добавление питательной среды, содержащей ФИМ, к клеткам перитонеального экссудата морской свинки в стеклянных вертикальных капиллярах будет подавлять или ограничивать выход лейкоцитов из капилляров. Несенсибилизированные Т-лимфоциты этим свойством не обладают. Со способностью к реакциям коррелирует и такой признак сенсибилизированных Т-лимфоцитов, как стимуляция их пролиферации in vitro с помощью соответствующего антигена. Т-лимфоциты, участвующие в реакциях гиперчувствительности замедленного типа, обозначают как ТГЧЗ, они имеют обычно фенотип Lyt-1+2, т. е. обладают специфическими рецепторами, с помощью которых осуществляют свои функции. Популяции таких ТГЧЗ-клеток можно лишить иммунологической компетентности, если обработать их антителами против этих рецепторов. Таким образом, можно считать окончательно установленным, что реакция ГЧЗ является одной из форм иммунного ответа, опосредуемого сенсибилизированными Т-лимфоцитами (ТГЧЗ) и выявляемого в виде характерного воспаления в месте введения (обычно в коже) антигена, который индуцировал ее развитие. Для проявления своей активности ТГЧЗ-клетки также нуждаются в представлении им антигенов с помощью молекул МНС класса I или класса II. Реакции ГЧЗ (т. е. сенсибилизацию клеток ТГЧЗ) могут индуцировать различные белковые антигены – агенты, вызывающие контактную аллергию, а также антигены бактерий, вирусов, грибов и простейших. Установлено, что клетки, сходные с клетками ТГЧЗ, имеющими фактор Lyt-1+, распознают антигены опухолей и играют важную роль в противоопухолевом иммунитете.

Трансплантационный иммунитет

Под трансплантационным иммунитетом понимают отторжение генетически отличающегося от хозяина трансплантата. Хотя по отношению к антигенам трансплантата организм также может вырабатывать антитела, главная роль в механизме трансплантационного иммунитета, как и всех реакций гиперчувствительности замедленного типа, принадлежит популяции Т-лимфоцитов, которые получили название Т-цитотоксических лимфоцитов, или Т-киллеров. Ведущая роль лимфоцитов в реакциях трансплантационного иммунитета подтверждается следующими феноменами:
1. Феномен «трансплантат против хозяина». Клетки лимфоидной ткани, пересаженные в генетически отличающийся организм, продолжают вести себя так же, как и в собственном организме, – в соответствии со своей главной функцией они распознают клетки нового хозяина как генетически чужеродные, атакуют и разрушают их.
2. Трансфер-реакция (местное проявление реакции «трансплантат против хозяина»). Суть этого явления в том, что если организму, который был предварительно сенсибилизирован трансплантатом аллогенного донора, ввести внутрикожно лимфоциты того же донора, через 24 – 48 ч на месте введения наблюдается кожная реакция, аналогичная туберкулиновой. Подобная реакция может быть воспроизведена, хотя и не в столь резкой форме, при внутрикожном введении и неиммунных лимфоцитов, но обязательно от генетически чужеродного донора.
В основе этой реакции лежит все то же свойство Т-лимфоцитов – способность распознавать чужеродные антигены и реагировать на них. Из экстрактов сенсибилизированных Т-лимфоцитов выделен фактор переноса гиперчувствительности замедленного типа – трансфер-фактор (англ. transfer factor). Трансфер-фактор, ответственный за перенос ГЧЗ от иммунных доноров к неиммунным реципиентам, имеет м. м. около 10 кД и содержит два противоположно действующих начала, индуцирующих хелперную и супрессорную активность.
Цитотоксические Т-лимфоциты относятся к субпопуляции, несущей специфические рецепторы Lyt-2 и Lyt-3.

Механизм действия Т-цитотоксических лимфоцитов

Осуществляемое Т-клетками разрушение клеток чужеродной ткани не зависит ни от антител, ни от комплемента, однако оно требует тесного контакта между Т-лимфоцитами и клеткой-мишенью. Последняя лизируется в результате однократного взаимодействия с Т-цитотоксической клеткой. Такой эффект осуществляют только живые Т-клетки. После взаимодействия с клеткой-мишенью и ее уничтожения Т-клетки остаются живыми и сохраняют способность взаимодействовать с другими клетками-мишенями. Следовательно, процесс Т-цитотоксического лизиса носит циклический характер. Взаимодействие Т-клеток с клеткой-мишенью складывается из трех последовательных стадий: а) межклеточное взаимодействие; б) стадия программирования лизиса; в) летальный удар – разрыв мембраны клетки-мишени и выход содержимого цитоплазмы.
Для литической активности Т-клеток обязательным условием является их непосредственный контакт с клеткой-мишенью; если его исключить, то разрушения последних не произойдет. Рецепторы Т-клеток распознают поверхностные антигенные детерминанты клетки-мишени и связываются с ними. Этот процесс требует присутствия ионов Mg2+. После установления непосредственного контакта между Т-клетками и клетками-мишенями происходят какие-то метаболические процессы, приводящие к нанесению летального повреждения в структуре мембраны клетки-мишени. Заключительный этап действия Т-лимфоцитов на клетку-мишень получил название летального удара, приводящего к лизису клетки-мишени. Для этой стадии требуется наличие ионов Ca2+.
Содержащийся в Т-цитотоксических клетках особый белок перфорин после внедрения в мембрану клетки-мишени в присутствии ионов Ca2+ полимеризуется и образует внутримембранные каналы диаметром от 5 до 16 нм. Через эти каналы-поры в клетку-мишень проникает вода, клетка набухает и гибнет в результате осмотического шока. Таким образом, механизм цитотоксического действия Т-цитотоксических лимфоцитов и клеток NK очень напоминает механизм действия мембраноатакующего комплекса, образуемого компонентами комплемента (C5b, C6, C7, C8, C9).

Другие киллерные клетки

Помимо Т-цитотоксических лимфоцитов и клеток NK, способноcтью оказывать литическое действие на клетки-мишени обладают и другие эффекторные клетки. Общим их свойством является наличие у них мембранного рецептора для Fc-фрагмента антител класса IgG. К таким клеткам-эффекторам, проявляющим цитотоксическую активность по отношению к клеткам-мишеням, обработанным антителами, относятся полиморфно-ядерные лейкоциты, макрофаги, клетки эмбриональной печени, а также популяция лимфоидных клеток, которая не имеет характерных для Ви Т-лимфоцитов маркеров. Эти лимфоциты получили название «нулевых клеток». Популяция «нулевых клеток» состоит как из цитотоксических, так и нецитотоксических клеток. Нулевые клетки, обладающие цитотоксичностью лишь в присутствии антител класса IgG, получили название К-клеток (англ. killer – убийца).
Зависимый от антител К-клеточный лизис, как и цитотоксическая активность Т-лимфоцитов и NK-клеток, требует непосредственного контакта К-клетки с клеткой-мишенью. Роль антител в К-клеточном лизисе достаточно сложна: в этот процесс вовлекаются как Fc-фрагмент, так и домен, несущий активный центр. Антитела выполняют роль мостика между К-клеткой и клеткой-мишенью.
Механизм литического действия К-клеток, по-видимому, сходен с механизмом лизиса, вызываемого Т-цитотоксическими лимфоцитами и NK-клетками. Хотя популяция К-клеток фенотипически сходна с популяцией NK-клеток, функционально они существенно различаются: NK-клетки лизируют клетки-мишени в отсутствие антител, а К-клеткам для проявления литической активности необходимо присутствие антител класса IgG. Имеются данные о том, что, подобно NK-клеткам, К-клетки также играют важную роль в подавлении роста опухолевых клеток.

Иммунологическая толерантность

Под иммунологической толерантностью (отсутствием иммунного ответа) понимают специфическое подавление иммунного ответа, вызванное предварительным введением антигена. Толерантность может проявляться в подавлении специфического иммунного ответа, включающего и синтез антител на соответствующий антиген, и гиперчувствительность замедленного типа, или же избирательно влияет на синтез антител того или иного класса иммуноглобулинов либо на тип иммунного ответа.
Толерантность может быть полной (образования антител не происходит) либо частичной (существенное снижение иммунного ответа).
Изучение механизма иммунологической толерантности стало особенно интенсивным после того, как в 1945 г. Р. Оуэн обнаружил, что у дизиготных, т. е. генетически отличающихся телят-двоен после рождения и на протяжении последующей жизни в крови циркулируют эритроциты обоих организмов, а кожный трансплантат, пересаженный от одного из них другому, стойко приживается. В 1949 г. Ф. Бернет и Ф. Феннер, исходя из того, что животные отвечают образованием антител и гиперчувствительностью замедленного типа на все чужеродные антигены, но не дают иммунного ответа на собственные антигены, сформулировали гипотезу о том, что еще в эмбриональном периоде организм способен различать «свои» и «чужие» антигены. Они предположили, что в результате воздействия на лимфоидную систему собственных антигенов во время эмбрионального развития, пока еще иммунная система не созрела, у животного формируется специфическая толерантность к антигенам собственных тканей. Поэтому, если воздействовать чужеродным антигеном на животное до созревания его иммунной системы, то такой антиген впоследствии будет распознаваться как собственный, и он не станет вызывать иммунного ответа. Это положение нашло подтверждение в опытах П. Медавара [и др.]. Они показали, что у мышей, которым вводили в эмбриональном периоде кроветворные клетки, аллотрансплантат, взятый от донора этих клеток, приживляется на длительный срок. Следовательно, введение антигена эмбриону не только не вызывает обычных иммунологических реакций, направленных на удаление этого антигена, а, наоборот, индуцирует развитие к нему толерантности. Состояние иммунологической толерантности к различным антигенам возможно получить искусственно, что позволило выяснить его основные механизмы.
Для иммунологической толерантности, как одной из форм иммунного ответа, характерны следующие особенности.
Во-первых, развитие этого состояния индуцируется только веществами антигенной природы. Во-вторых, толерантность иммунологически специфична. Она проявляется только в отношении того антигена, который индуцировал ее формирование. В-третьих, искусственно полученная толерантность проявляется в разной степени, и продолжительность ее сохранения сильно варьирует. Это зависит от периода жизни, во время которого индуцируется развитие толерантности, от характера используемого для этой цели антигена, его дозы, физических свойств и способа введения, а также от физиологического состояния организма.
Эффективнее всего развитие толерантности удается индуцировать в эмбриональном периоде, хотя ее можно вызвать и у взрослых животных. Однако чем позднее, тем это состояние индуцируется труднее и большей дозы антигена требует. Чем больше доза антигена, тем выше степень толерантности и тем дольше она сохраняется.
Определенные способы введения антигена, не вызывающие иммунного ответа, приводят к развитию толерантности. Например, возникновение толерантности стимулирует введение в желудок через зонд. Как правило, ее очень легко вызывают такие неметаболизируемые антигены, как микробные полисахариды. Установлено, что уменьшение молекулярной массы антигена при сохранении его специфичности снижает способность вызывать иммунный ответ, но повышает толерантную активность. Индукция специфической толерантности облегчается, если использовать в качестве носителя детерминантов неиммуногенные для данного животного антигены. В частности, гаптены, конъюгированные с сингенными клетками селезенки, легко индуцируют гаптен-специфическую толерантность.
Толерантность тем труднее индуцировать, чем больше степень генетической чужеродности антигена для данного организма. Наконец, для поддержания состояния иммунологической толерантности важно постоянное присутствие антигена (например, постоянный клеточный химеризм у телят-двоен).
Развитие иммунологической толерантности во многом зависит от физиологического состояния организма. Любые воздействия, подавляющие иммунный ответ, будут способствовать развитию толерантности. Пороговая доза антигена для индукции толерантности у иммунодепрессированных близка к таковой у новорожденных животных.
Необходимость создания иммунологической толерантности во взрослом состоянии всегда возникает при аллотрансплантации для преодоления трансплантационного иммунитета. В этих случаях прибегают к облучению организма реципиента рентгеновскими лучами или использованию химиопрепаратов, подавляющих биосинтез ДНК и размножение клеток лимфоидной ткани. Такими иммунодепрессивными препаратами являются 6-меркаптопурин, аметоптерин, акрифлавин, циклофосфамид, а также антилимфоцитарная сыворотка. Очень сильным супрессором иммунной системы является антибиотик циклоспорин А. Это циклический пептид из 11 аминокислотных остатков, его молекулярная масса около 1,2 кД, он выделен из плесневого гриба Trichoderma polysporum. Иммунодепрессивное действие циклоспорина А связано с тем, что он подавляет синтез интерлейкина-2, а также экспрессию молекул МНС класса II, рецептора к интерлейкину-1 и рецептора к интерлейкину-2. Однако широкому применению циклоспорина А при пересадке органов и тканей препятствует его токсическое действие на почки.

Механизм иммунологической толерантности

Условия развития индуцированной иммунологической толерантности указывают на то, что в ее основе лежат различные механизмы. Они реализуются в зависимости от природы антигена, индуцирующего возникновение толерантности, особенностей его применения и в значительной мере – от состояния организма хозяина. В некоторых случаях она возникает как следствие элиминации или постоянной инактивации специфических Т– и В-лимфоцитов в популяции периферических лимфоцитов. Если при дифференцировке В-лимфоцитов не произойдет образования достаточного количества клеток иммунной памяти, это приведет к состоянию толерантности, которое будет продолжаться до тех пор, пока из клеток костного мозга не образуются новые зрелые В-лимфоциты с данной антительной специфичностью. В других случаях толерантность может быть опосредована действием пассивно введенных антител, которые будут быстро выводить толероген и тем самым предотвращать его действие. Возможно, этому способствует стимуляция введенными антителами синтеза антиидиотипических антител.
Толерантность может быть следствием антигенных перегрузок: все образующиеся антитела связываются имеющимся в большом количестве в организме антигеном, а комплекс антиген + антитело подвергается фагоцитозу, и в сыворотке не остается свободных антител. В соответствии с теорией идиотип-антиидиотипических отношений, антиидиотипические антитела могут подавлять образование антител, несущих данный идиотип, и поэтому способны поддерживать состояние специфической толерантности к нему. Однако основную роль в формировании иммунологической толерантности, и прежде всего к антигенам собственных тканей, играют определенные изменения в функциях различных популяций Т– и В-лимфоцитов. В 1974 г. среди Т-лимфоцитов была обнаружена особая популяция клеток, получивших название Т-супрессоров. Т-супрессоры обладают способностью подавлять активность Т-хелперов 1 и 2. Вследствие этого предотвращается трансформация В-лимфоцитов в антителообразующие клетки, с одной стороны, и образование Т-эффекторных клеток (Т-цитотоксических и ТГЧЗ-лимфоцитов) – с другой. Иначе говоря, Т-супрессоры предотвращают образование клеток-эффекторов против данного антигена. Позднее появились данные о существовании супрессорных клеток и среди В-лимфоцитов. Эти два вида клеток – Т-супрессоры и В-супрессоры – и являются ответственными за развитие иммунологической толерантности. В организме эмбриона и новорожденного человека и животного Т-супрессоры предотвращают образование клонов Т-цитотоксических клеток. Этим самым они способствуют развитию толерантности к собственным антигенам и предотвращают иммунный ответ со стороны лимфоцитов матери на аллоантиген новорожденного, т. е. сохраняют его жизнь. Эта главная функция Т-супрессоров заканчивается к концу первой недели жизни новорожденного. К этому времени у него возникает новая специальная популяция клеток – Т-клетокконтрсупрессоров. Они продуцируют свой собственный лимфокин – специфический фактор, взаимодействующий с Т-хелперами. Благодаря этому фактору Т-хелперы становятся устойчивыми к Т-супрессорам и их факторам. Между различными популяциями Т– и В-лимфоцитов существуют сложные взаимоотношения, опосредуемые разнообразными лимфокинами, от которых зависят форма и выражение иммунного ответа.
Таким образом, благодаря действию Т-супрессоров, еще в эмбриональном периоде и в первые дни жизни после рождения предотвращается трансформация тех клонов В-лимфоцитов, которые имеют рецепторы к антигенам собственных тканей, в антителообразующие клетки, а Т-лимфоцитов – в Т-цитотоксические лимфоциты, способные разрушать собственные ткани.
Следовательно, состояние толерантности не характеризуется вообще отсутствием иммунной реакции на данный антиген. Иммунологическая толерантность опосредуется активностью особых регуляторных лимфоцитов – Т– и В-супрессоров. Поэтому иммунологическая толерантность представляет собой особую форму иммунного ответа, характеризующуюся запретом, налагаемым Т– и В-супрессорами на образование клеток-эффекторов против данного, в том числе собственного, антигена.

Идиотип-антиидиотипические отношения

Как уже отмечалось, в молекуле иммуноглобулина содержится три типа антигенных детерминантов: изотипы, аллотипы и идиотипы.
Идиотипами называют антигенные детерминанты, определяемые структурой активных центров антител, т. е. структурой вариабельных областей L– и Н-цепей. Собственно, под идиотипом понимают набор идиотопов, свойственный антителам, синтезируемым данным клоном В-клеток. В свою очередь, идиотоп – один из собственных антигенных детерминантов активного центра молекул антител, продуцируемых одним или небольшим числом близких клонов В-клеток. Идиотипические детерминанты обнаруживают и типируют с помощью антиидиотипических антител.
В 1974 г. Н. Ерне высказал идею о том, что иммунная система представляет собой сеть взаимодействующих идиотипов и антиидиотипов. Одно из положений этой теории заключается в том, что для каждого антитела с его идиотипом (АТ1) существует комплементарное антитело, способное связываться с этим идиотипом (АТ2), т. е. выступающее как антиидиотип. Однако такое антитело имеет также и свой идиотип, определяемый структурой его активного центра. Так как у неиммунизированных животных содержание антител и клонов клеток, их синтезирующих, по-видимому, постоянно, то, по мнению Н. Ерне, взаимодействие антител-антиидиотипов с мембранными иммуноглобулиновыми рецепторами лимфоцитов, которые имеют структуру идиотипа, будет подавлять (супрессировать) образование антител идиотипов. Иначе говоря, антиидиотипы подавляют синтез идиотипов. Наоборот, действие антител идиотипов на лимфоциты, несущие иммуноглобулиновые рецепторы типа антиидиотипов, будет стимулировать размножение этих клеток и синтез антиидиотипов. Таким образом, одним из механизмов регуляции функционирования иммунной системы (содержания антител) является механизм сетевого сбалансированного взаимодействия между идиотипами (идиотипами антител) и антиидиотипами (иммуноглобулиновыми лимфоцитарными рецепторами, активные центры которых определяют специфичность антиидиотипов). Как было установлено позднее, антитела могут возникать и против антиидиотипов (АТ3). Они сходны с исходными идиотипами (АТ1), а антитела против анти-антиидиотипов (АТ4) сходны с АТ2. В значительной степени благодаря этому взаимодействию в организме поддерживается оптимальный в данный момент уровень антител. В идиотип-антиидиотипической регуляции принимают участие и Т-лимфоциты.
Идиотипические детерминанты обнаружены в антигенсвязывающих рецепторах В– и Т-клеток. Это свидетельствует о том, что такие участки могут играть важную роль в осуществлении лимфоцитами своих функций, а иммунная система действительно представляет собой сеть вариабельных участков, поскольку идиотипические детерминанты В– и Т-лимфоцитов ассоциированы с их мембранными рецепторами. Равновесие между клонами В– и Т-лимфоцитов, основанное на идиотипических связях, играет существенную роль в физиологии иммунной системы, а его нарушение может стать причиной аутоиммунных заболеваний.
Назад: Глава 31 Приобретенный иммунитет. Формы иммунного ответа. Антитела
Дальше: Глава 33 Клеточные основы иммунитета. Органы иммунитета

Алексей
Перезвоните мне пожалуйста 8(953)367-35-45 Антон.
Антон
Перезвоните мне пожалуйста по номеру. 8 (904) 555-73-24 Антон
Edwardlot
Здравствуте! Нашел в интернете сайт с полезными роликами. Занятно. Советую КАК ЗАРАБОТАТЬ В ТЕЛЕГРАММЕ БЕЗ ВЛОЖЕНИИ? (2021) / ДЕНЬГИ в интернете на Telegram @@-=
Edwardneist
Привет! Нашел в интернете ресурс с полезными видео. Я в восторге. Хочу поделиться Вкусная закуска - Намазка на бутерброды / Волшебная еда - Кулинарные рецепты для мужчин @@-=