Книга: Электроника для начинающих (2-е издание)
Назад: Эксперимент 14. Мигающий брелок
Дальше: Глава 4 МИКРОСХЕМЫ, ВАМ СЛОВО!

Эксперимент 15. Охранная сигнализация, часть первая

Теперь пришло время для эксперимента, который позволит применить полученные вами знания для создания простого, но работоспособного продукта для бытового применения. Возможно, лично вам не нужна охранная сигнализация, однако ее разработка и сборка станет отличным введением в процесс создания схем для выполнения реальных практических задач.
Должен сразу предупредить, что создание схемы с нуля, как правило, приводит к непредвиденным проблемам и ошибкам. Было бы чересчур самонадеянно рассчитывать иначе. Поэтому в последовательности описанных далее шагов вы обнаружите как минимум одну заминку и переделку — пока наконец не получим надежную работающую систему.

Что вам понадобится

• Батарея на 9 В и разъем или сетевой адаптер на 9 В (на ваш выбор)
• Макетная плата, монтажный провод, кусачки, инструмент для зачистки проводов, мультиметр
• Стандартный светодиод (1 шт.)
• Транзистор серии 2N2222 (1 шт.)
• Двухполюсное реле на два направления с напряжением срабатывания 9 В (1 шт.)
• Диод серии 1N4001 (1 шт.)
• Резисторы: 470 Ом (1 шт), 1 кОм (1 шт.), 10 кОм (1 шт.)

Техническое задание

Этот эксперимент довольно сложный и требует планирования. Но прежде чем я выработаю план, мне нужно знать, чего я хочу. Это приведет к написанию так называемого «технического задания». Попутно я также попытаюсь представить, как реализовать каждое требование с помощью компонентов, которые упоминались в предыдущих экспериментах.
Итак, что необходимо для охранной сигнализации?
1. Система обнаружения. Устройство должно определять проникновение кого-либо в помещение. Было бы здорово создать замысловатую систему с лазерными лучами и ультразвуком, но пока это слишком сложно. Поскольку это наша первая разработка, выберем широко распространенные магнитные датчики для окон и дверей (герконы).
2. Звуковое оповещение. Сигнализация должна издавать громкий, привлекающий внимание звуковой сигнал.
3. Устойчивость к взлому. Никто не должен иметь возможность отключить сигнализацию, перерезав провода. Иначе говоря, взлом должен приводить к срабатыванию сигнализации.
4. Последовательно соединенные датчики. Чтобы сделать систему устойчивой к взлому, можно соединить последовательно несколько нормально замкнутых переключателей и пропустить через них небольшой ток. Если любой из переключателей разомкнется, или если повредится провод, это прервет цепь, и устройство начнет подавать сигнал. Я думаю, что большинство проводных сигнальных систем создано по этому принципу.
5. Вариант с реле. Если датчики соединены последовательно, то размыкание переключателя или разрыв цепи должны включить сигнализацию. Задачу можно решить с помощью реле на два направления. Ток, проходящий через катушку реле, удерживает пару контактов в разомкнутом состоянии, пока не прекратится подача тока и в этот момент контакты замыкаются. Но чтобы удерживать контакты разомкнутыми, реле должно потреблять существенную мощность. Мне бы хотелось, чтобы в режиме ожидания моя сигнализация потребляла очень мало тока, чтобы ее можно было питать от батареи. Системы сигнализации никогда не должны полностью зависеть от домашней сети переменного тока.
6. Может быть, использовать транзистор?
Если отказаться от реле, то в качестве переключателя, вероятно, подойдет транзистор. Он смог бы включать сигнализацию, когда цепь датчиков прервется. Пока все датчики замкнуты, на базе транзистора можно поддерживать сравнительно низкое напряжение. Когда цепь разомкнется, напряжение возрастет и транзистор включится.
7. Постановка на охрану. Потребуется небольшой источник света, который загорается, когда все двери и окна закрыты. Это подскажет мне, что сигнализация готова к использованию. Затем я нажму кнопку, которая запустит обратный отсчет и даст мне минуту времени, чтобы уйти. Спустя минуту сигнализация будет поставлена на охрану.
8. Автономность. Мне не хотелось бы, чтобы при попытке взлома сигнализация быстро выключалась. Если кто-то откроет окно, сигнализация должна продолжать издавать звук, даже если окно сразу же будет снова закрыто. Может, транзистор запустит реле, а когда реле включится, оно автоматически будет поддерживать свое электропитание? Или это может сделать транзистор?
9. Первоначальная задержка. Я не хочу, чтобы сигнализация поднимала шум сразу же, лишь только я зашел в охраняемое пространство. Мне необходимо немного времени, чтобы добраться до устройства и снять объект с охраны. Если я не успею отключить сигнализацию за этот промежуток времени, тогда она должна начать издавать сигнал тревоги.
10. Отключение с помощью кода. Хорошо бы отключать сигнализацию с помощью какой-либо панели для ввода секретного кода.

Реализация технического задания

Приведенный список требований выглядит достаточно амбициозно, учитывая, что единственная вещь, которую вы создали к настоящему моменту, — это небольшой генератор на трех транзисторах. Но на самом деле большинство функций можно реализовать достаточно легко. Сложные задачи я отложил на потом, когда мы получим соответствующие знания. В итоге мы справимся со всеми требованиями технического задания, а все компоненты устройства поместятся на одной макетной плате (за исключением схемы генератора звукового сигнала, которая будет необязательной).

Датчики

Давайте начнем с компонентов, которые служат датчиками и запускают сигнализацию. Обычный геркон состоит из двух модулей: магнитного и переключающего (рис. 3.75).
В магнитном модуле находится постоянный магнит и больше ничего. Модуль переключателя содержит геркон, который под влиянием магнита замыкается или размыкается (как контакт внутри реле).
Рис. 3.75. Датчик сигнализации состоит из магнита в пластиковом корпусе (внизу слева) и активируемого магнитом геркона в аналогичном корпусе (вверху справа)
Рис. 3.76. Устройство датчика системы сигнализации: геркон (внизу) и магнит, который его активирует (вверху)
Магнитный модуль прикрепляется к подвижной части двери или окна, а модуль переключателя — к оконной или дверной раме. Когда окно или дверь закрыты, магнитный модуль почти касается модуля переключателя. Магнит удерживает переключатель замкнутым, пока не будет открыта дверь или окно, после чего переключатель разомкнется. На рис. 3.76 приведен разрез комбинации «магнит-геркон».
Геркон состоит из двух гибких намагниченных полос, которые заканчиваются электрическими контактами. Каждая полоска соединяется с наружным винтом, к которому можно прикрепить провод.
Когда магнит приближается к переключателю, он намагничивает гибкие полосы, побуждая их притягиваться друг к другу, и контакт замыкается.
Из моего описания ясно, что геркон является нормально разомкнутым, но замыкается магнитным полем. При покупке датчиков для сигнализации следует помнить о том, что некоторые из них содержат герконы, работающие наоборот. Они нормально замкнуты, а при воздействии магнитного поля размыкаются. Такие датчики для наших целей не подходят.

Устройство управления на транзисторе

Итак, как мы можем включить часть системы сигнализации, которая генерирует сигнал тревоги? Вспомните о том, что у нас будут последовательно соединенные переключатели, которые нормально замкнуты, а когда один из них размыкается, то происходит срабатывание сигнализации.
Вспомним, как работает транзистор n-p-n-типа. Пока потенциал базы ниже определенного значения, транзистор закрыт и ток между коллектором и эмиттером отсутствует. Когда база становится более положительной, транзистор открывается и начинает проводить ток.
Взгляните на рис. 3.77, схема построена на основе нашего старого приятеля — транзистора серии 2N2222. Чтобы продемонстрировать принцип действия, я добавил нормально замкнутую кнопку, которая представляет датчик сигнализации. Я знаю, что в вашем наборе деталей нет нормально замкнутой кнопки, но задействуйте свое воображение, пока мы не будем готовы перенести эту схему на макетную плату.
Пока кнопка остается замкнутой, она соединяет базу транзистора с отрицательной шиной источника питания через резистор 1 кОм. В то же время база соединена с положительной шиной питания через резистор номиналом 10 кОм. Из-за различия сопротивлений напряжение на базе ближе к нулю, чем к 9 В, что удерживает транзистор ниже его порога включения.
Рис. 3.77. Схема, в которой светодиод включается при размыкании нормально замкнутой кнопки
В результате ток через транзистор практически не течет, а светодиод не горит.
Что же произойдет, если разомкнуть кнопку? База транзистора окажется подключенной только к положительной шине питания. Она станет более положительной, в результате сопротивление транзистора снизится, и ток через него резко возрастет. Светодиод теперь ярко сияет. Таким образом, когда кнопка разрывает соединение, светодиод зажигается.
Похоже, эта схема нам подойдет. Хотя для разных дверей и окон понадобится несколько датчиков, но мы сможем подключить их столько, сколько нужно, как показано на рис. 3.78, где датчик сигнализации условно показан в виде кнопки. Провода можно проложить по всему дому, а их общее сопротивление должно быть меньше, чем сопротивление резистора номиналом 10 кОм.
Пока все датчики остаются замкнутыми, транзистор потребляет крайне малый ток — около 1 мА. Для демонстрации вы можете запустить описанную схему с помощью батареи на 9 В. Для практического использования вам понадобился бы аккумулятор на 12 В, который будет автоматически заряжаться от специального устройства. Это выходит за рамки данной книги, но примите к сведению то, что аккумуляторы и зарядные устройства для сигнализации широко доступны, и вы легко при необходимости их найдете.
Рис. 3.78. Если любой из последовательно соединенных датчиков разомкнется, то транзистор включится
Теперь предположим, что мы заменили светодиод на реле, как показано на рис. 3.79. (Я изобразил двухполюсное реле, хотя второй полюс пока нам не понадобится.) Пока все кнопки остаются замкнутыми, на базе транзистора присутствует относительно низкий потенциал, поэтому транзистор закрыт, ток в обмотке реле отсутствует, и его контакты остаются в исходном состоянии.
Когда любой из датчиков размыкается, более высокое напряжение на базе транзистора вызовет подачу тока на катушку реле, которое запустит сигнализацию, как на рис. 3.80.
Замечание
Работа реле в таком режиме вполне допустима, потому что оно не будет «всегда включено». Для него нормальное состояние — выключенное, а мощность потребляется только при срабатывании сигнализации.
Рис. 3.79. В этой схеме реле срабатывает, когда размыкается любой из датчиков
Обратите внимание на то, что я изъял резистор 470 Ом из схемы, потому что реле не нуждается в какой-либо защите от источника питания.
Если хотите, то можете самостоятельно собрать эту схему с тем же реле, как и в эксперименте 7 (см. раздел «Эксперимент 7. Исследование реле» главы 2). Но, возможно, следует подождать, пока я доработаю ее.
Рис. 3.80. Теперь, когда датчик в цепи разомкнут, транзистор включает реле
Рис. 3.81. Датчик снова замкнут. Транзистор выключен, но сигнал тревоги выдается
Вам следует выяснить два обстоятельства:
• Будет ли реле перегружать транзистор? Вы найдете ответ, заглянув в технические описания этих двух компонентов.
• Помните, что во включенном состоянии на транзисторе имеется небольшое падение напряжения. Хватит ли оставшегося напряжения для надежного срабатывания 9-воль- тового реле? В техническом паспорте реле указано минимальное рабочее напряжение его обмотки. Вы можете проверить эти сведения опытным путем.

Самоблокирующееся реле

Схема, которая разработана на данный момент, будет активировать сигнализацию, когда происходит размыкание любого датчика. Это хорошо, но что случится, если Датчик вернется в замкнутое состояние? На базу транзистора вновь будет подано низкое напряжение, поэтому он отключит сигнализацию. А вот это уже плохо.
В соответствии с пунктом 8 из моего технического задания сигнализация должна продолжать выдавать сигнал тревоги, даже после того как кто-то открыл дверь или окно и быстро закрыл его. Поэтому реле должно каким-то образом блокировать себя.
Один из способов это сделать — использовать реле с блокировкой, которое остается в одном из двух положений и требует электропитания только для переключения из одной позиции в другую. Но у реле с блокировкой две катушки, и для возврата его в исходное состояние потребуется дополнительное схемное решение, чтобы вы смогли отключить сигнализацию. На самом деле, проще использовать реле без блокировки, и придумать способ удержания реле включенным на неопределенное время, после того как на него лишь один раз было подано питание.
Рис. 3.82. Объяснение принципа самоблокировки реле
Секрет раскрывается на рис. 3.81. В данном случае крайняя справа кнопка снова замкнулась после размыкания, и поэтому транзистор выключился, но реле по-прежнему включено, т. к. теперь на обмотку подается питание через дополнительно подключенный провод. Когда реле включает сигнализацию, оно также блокирует само себя.
На рис. 3.82 показаны цепи, по которым протекает электрический ток. Поскольку контакты реле замкнуты, катушка получает питание через собственные контакты. Таким образом, реле остается включенным.

Блокировка несоответствующего напряжения

Полученная схема выглядит многообещающей, но есть одна проблема. Не все процессы, происходящие в данной схеме, отображены на рис. 3.81. Взгляните на рис. ЦВ-3.83. В верхней части этого рисунка крупным планом показана цепь управления реле. Когда сигнализация блокирует себя, а транзистор выключен, электрический ток может поступать с катушки реле на эмиттер транзистора. Я обозначил эти провода красным цветом, поскольку они будут относительно положительными.
Подача обратного напряжения на транзистор — довольно неприятная ситуация. При этом можно вывести компонент из строя. Как же этого избежать? Нужно как-то предотвратить протекание обратного тока, например, добавив выпрямительный диод. Измененная часть схемы показана внизу на рис. ЦВ-3.83.
Новый вариант схемы сигнализации с блокирующим диодом изображен на рис. 3.84.
Рис. ЦВ-3.83. Диод предотвращает обратный ток через транзистор, когда реле заблокировано
Рис. 3.84. Схема сигнализации с блокирующим диодом
Но что на самом деле представляет собой диод? То же самое, что и светодиод? И да, и нет.

Все о диодах

Диод — это давно известный полупроводниковый прибор. Электрический ток через диод протекает в одном (прямом) направлении и не протекает в обратном направлении. Как и его более поздний «родственник» — светодиод, диод можно вывести из строя чрезмерным обратным напряжением и слишком большой силой тока, но большинство обычных диодов гораздо более устойчивы к перегрузкам, чем светодиоды. Фактически они выдерживают обратное напряжение до максимального значения, указанного производителем.
Отрицательный вывод диода всегда маркируется, обычно круговой полосой, как показано на рис. 3.25. Этот вывод называется катодом. Другой вывод — это анод, он не помечается. Иногда диоды очень полезны в логических схемах, они также способны преобразовывать переменный ток в постоянный. Выпускаются диоды разных типономиналов. Если максимальный ток или напряжение какого-либо диода недостаточны для ваших целей, замените его на более мощный.
Я рекомендую выбирать диоды, рассчитанные на напряжение не меньше, чем у источника питания. Как и любой полупроводниковый компонент, при неправильном использовании диод может перегреться и выйти из строя.
Три варианта условного обозначения диода приведены на рис. 3.85.
Рис. 3.85. Три варианта условного обозначения диода. Они функционально идентичны

Одна проблема создает другую

Решив проблему самоблокировки реле во включенном состоянии добавлением дополнительного провода, мы создали новую проблему — электрический ток может пойти обратно к транзистору. Мы добавили диод, но при этом возникла еще одна проблема.
Работа диода тоже чего-то стоит, как и работа транзистора. На самом деле, поскольку оба компонента содержат р-я-переход, то затраты оказываются сравнимы. Эффект заключается в снижении напряжения.
Ток поступает в обмотку реле, проходя сначала через транзистор, а затем через диод. После того как реле включится, оно само поддерживает автономную работу, и это не проблема. Но транзистор накладывает «штраф» размером около 0,7 В, а диод накладывает дополнительный «штраф», тоже около 0,7 В, и в сумме потери получаются 1,4 В. Это падение напряжения является фиксированным и не зависит от напряжения источника питания.
Я думаю, что наше реле, рассчитанное на 9 В, должно надежно работать при напряжении 7,6 В. В техническом паспорте компании Ошгоп указано, что для срабатывания рекомендованного мною реле серии G5V-2 достаточно 75% от подаваемого напряжения, что составляет всего 6,75 В. Похоже, это указанный тип реле подойдет для наших целей.
А как быть с другими реле? Некоторые компоненты имеют более жесткие параметры, чем другие. А если напряжение батареи окажется ниже 9 В? Проектировщик всегда должен учитывать все факторы, и, как правило, следует по возможности выбирать компоненты, номиналы которых наиболее близки к расчетным.
Кое-кто из читателей сообщил мне о проблеме падения напряжения, когда эта схема появилась в первом издании книги. (Да, я уделяю внимание откликам читателей.) Тогда я рекомендовал источник питания напряжением 12 В и считал, что потери в размере 1,4 В на транзисторе и диоде приемлемы. Но для этого издания я решил, что все устройства должны работать от источника питания напряжением 9 В, чтобы не пришлось покупать сетевой адаптер и вы могли бы использовать только батареи на 9 В, если вам так нравится. К сожалению, изъятие 1,4 В из 9 В может привести к неприятностям.
Вы убедились, что любое решение приводит к разным последствиям. Теперь, когда выбран источник питания на 9 В, я думаю, что необходим лучший способ самоблокировки реле.

Решение проблемы

Первый этап решения проблемы — четко понять, в чем ее суть.
Задачу управления сигнализацией осуществляют одновременно два компонента: транзистор и реле. Транзистор обеспечивает срабатывание сигнализации. После этого транзистор не делает ничего. Он выключен, а самоблокировку обеспечивает только реле. Слабым местом в этой системе является то, что задача разделена между двумя компонентами, и они могут конфликтовать друг с другом. Лучшим решением мог бы стать один компонент, отвечающий за все. Мне хотелось бы сохранить контролирующую роль за транзистором. Он должен поддерживать себя во включенном состоянии неограниченное время, а пока он будет включен, то и реле останется включенным.
Рис. 3.86. Цепь датчиков теперь заземлена через правые контакты реле, которые нормально замкнуты
И вот теперь я понимаю, как решить проблему. Все, что нужно, — это задействовать второй полюс реле (это то же самое реле, которое вы исследовали в эксперименте 7). С помощью второй пары контактов реле, которые нормально замкнуты, можно заземлить цепь датчиков, как показано на рис. 3.86.
Вот как это будет работать теперь. База транзистора сейчас подключена к отрицательной шине источника питания через цепочку датчиков, резистор 1 кОм и контакты с правой стороны реле (которые нормально замкнуты). Поскольку эта цепь соединений не нарушена, база транзистора находится под достаточно низким напряжением, чтобы предотвратить протекание тока.
Пусть теперь кто-то вызвал срабатывание датчика. База транзистора больше не заземлена, и таким образом транзистор включает реле. Контакты с левой стороны замыкаются и запускают сигнализацию. Но одновременно контакты реле, обозначенные справа, размыкаются.
Рис. 3.87. Теперь после размыкания датчика транзистор остается включенным, даже если датчик впоследствии будет замкнут
Если кто-то теперь снова вернет датчик в замкнутое состояние, то это ни к чему не приведет, потому что контакты реле, изображенные справа, разомкнуты и соединение базы транзистора с отрицательной шиной источника питания по- прежнему отсутствует. Транзистор продолжает пропускать ток, а реле остается включенным (рис. 3.87). Проблема решена.

Защитный диод

Как вы, наверное, заметили, я удалил диод из схемы. Но если вы взглянете на рис. 3.88 (я обещаю, что это последняя версия, по крайней мере, на данный момент), то увидите, что диод появился снова, хотя теперь он работает совсем иначе. Здесь он подключен параллельно к обмотке реле. Что же он тут делает?
Рис. 3.88. Теперь диод защищает транзистор от противоЭДС обмотки реле
Далее в этой книге мы подробнее рассмотрим свойства катушки. Но кое-что я расскажу вам прямо сейчас — обмотка из проводов сохраняет энергию, при подаче питания и высвобождает ее, когда питание отключается. Высвобождение энергии создает всплеск тока, который может повредить некоторые компоненты, особенно полупроводниковые приборы.
Поэтому подключение защитного диода параллельно обмотке реле — это стандартное решение. Диод должен быть включен так, чтобы нормальный рабочий ток протекал через катушку, а после снятия напряжения с обмотки выброс обратного тока гасился бы на диоде, защищая остальные компоненты схемы. Именно так все и происходит в нашей схеме.
Если у вас небольшое реле с маленькой катушкой, то можно в принципе обойтись без защитного диода. Но в любом случае защитный диод здесь не повредит.

Пора заняться макетом

В предыдущем разделе я привел множество объяснений, хотя обычно это мне не свойственно. Но мне захотелось продемонстрировать вам, как можно «с нуля» создать новую схему, имея только техническое задание. Теперь, наконец- то, пришло время собрать реальное устройство. А как же еще убедиться, что все наши идеи были правильными?
На рис. 3.89 показана компоновка макетной платы. Дорожки, соединяющие компоненты, показаны на рис. 3.90. Вместо источника звука для сигнализации, для наглядности, я использовал светодиод. Вскоре мы обсудим возможные варианты генерации звука.
Когда я сам собирал это устройство, то сымитировал датчики сигнализации, взяв нормально замкнутые кнопки. Просто мне хотелось сэкономить на компонентах, но если вы действительно решитесь использовать эту схему сигнализации, то вам понадобятся настоящие магнитные датчики, а не обычные кнопки. На экспериментальном макете устройства датчики заменены на два нормально замкнутых отрезка провода. Этого достаточно для тестирования устройства. Далее я буду называть их «провода датчика». На рис. 3.89 эти два скрещенных провода находятся в самой нижней части платы.
Перед подачей питания убедитесь в том, что скрещенные провода замкнуты друг с другом. Вначале ничего не должно происходить.
Теперь разъедините провода датчика. Сразу же загорится светодиод, а если вы в дальнейшем соберете следующий вариант схемы, то раздастся звук, оповещая о том, что сигнализация сработала.
Рис. 3.89. Окончательный вариант макета сигнализации
Теперь заново соедините провода, имитируя ситуацию, когда злоумышленник открывает окно, слышит сигнализацию и быстро закрывает окно. Если вы все собрали правильно, то светодиод будет продолжать гореть.
Пока все идет нормально. Наша схема работает. Сигнализация сама себя блокирует. Но в таком случае как же ее теперь выключить?
Нет проблем. Просто отключите питание. Реле вернется в исходное положение и, когда вы в следующий раз подадите питание, устройство снова окажется в режиме ожидания. В заключительном варианте этого проекта для выключения сигнализации вам потребуется ввести секретный код на клавишной панели. В эксперименте 21 я подскажу способ создать систему защиты с цифровым паролем. Вам понадобятся логические микросхемы, с которыми мы пока не имели дела.
 Рис. 3.90. Макет сигнализации с показанными внутренними соединительными дорожками

Добавляем звук

Чтобы сигнализация подавала звуковой сигнал, можно использовать схему генератора и динамик из эксперимента 11. Хотя на самом деле есть и другие способы. Интегральная микросхема, известная как таймер 555, лучше подойдет для этой работы, но так уж получилось, что она будет следующей темой, о которой я расскажу вам в эксперименте 16.
Таймер 555 способен также удовлетворить пунктам 7 и 9 из технического задания, которые подразумевают задержку перед срабатыванием сигнализации. Поэтому отложим пока проект сигнализации, чтобы полностью завершить его в эксперименте 18.

Итоги

Хотя проект сигнализации еще не завершен, он затронул несколько важных моментов. Я резюмирую их здесь, чтобы ссылаться на них в дальнейшем.
• Транзистор способен обеспечивать высокий выходной сигнал в ответ на низкий входной, и наоборот.
• Реле может блокироваться во включенном состоянии при подаче напряжения на обмотку.
• Диод может препятствовать протеканию тока в тех цепях, где ток не нужен.
• При протекании через диод прямого тока напряжение снижается примерно на 0,7 В.
• Открытый транзистор также снижает напряжение примерно на 0,7 В.
• Падение напряжения на полупроводниковом приборе остается постоянным независимо от величины подаваемого напряжения. Следовательно, эффект более существенен, если подаваемое напряжение низкое.
• Катушка реле при выключении может создавать противоЭДС (выброс обратного тока).
• Защитный диод, подключенный параллельно обмотке реле, способен подавить противоЭДС. Диод должен быть закрыт при нормальном направлении тока и пропускать обратный импульс, созданный катушкой.
Назад: Эксперимент 14. Мигающий брелок
Дальше: Глава 4 МИКРОСХЕМЫ, ВАМ СЛОВО!