Эксперимент 14. Мигающий брелок
До сих пор вы сразу начинали сборку устройств, не углубляясь в теорию и не планируя ничего заранее. Именно так выглядит процесс обучения через открытие. Однако иногда план необходим, и сейчас наступил один из таких случаев. Вначале я собираюсь изложить все необходимые сведения, а затем мы приступим к поэтапному процессу сборки устройства.
Что вам понадобится
• Батарея на 9 В с разъемом или сетевой адаптер на 9 В
• Монтажный провод, кусачки, инструмент для зачистки проводов, мультиметр
• Паяльник мощностью 15 Вт
• Тонкий припой (0,5 мм)
• Плата с отверстиями (без медных дорожек)
• Держатель
• Резисторы: 470 Ом (2 шт.), 100 кОм (1 шт.), 4,7 кОм (2 шт.), 470 кОм (2 шт.)
• Конденсаторы емкостью 3,3 мкФ (2 шт.) и 220 мкФ (1 шт.)
• Транзисторы серии 2N2222 (3 шт.)
• Стандартный светодиод (1 шт.)
Возвращаемся к схеме генератора
Вернитесь к схеме генератора, изображенной на рис. 2.111. Теперь наша задача — сделать это устройство как можно компактнее, чтобы его можно было носить с собой.
Представьте, что выводы компонентов соединены между собой резинками, которые позволяют вам перемещать детали по поверхности без разрыва связей между ними. Можно так расположить компоненты, чтобы резинки были совсем не растянуты, в этом случае устройство окажется максимально компактным. Теперь вы можете закрепить детали на перфорированной плате и соединить их медными проводниками.
Рис. 3.66. Компоненты генератора занимают минимум пространства на перфорированной плате
Единственная проблема — медные проводники без изоляции не могут пересекаться. Идея заключается в том, что для проверки работоспособности вашей схемы вы можете отправить техническое задание в мастерскую, где занимаются изготовлением печатных плат.
Современные печатные платы являются, по меньшей мере, двусторонними, а многие имеют дополнительные промежуточные слои, обеспечивающие пересечение множества соединительных проводников, не создавая электрического контакта. Но лучше всего начать с самой простой, традиционной печатной платы, компоненты на которой расположены с одной стороны, а проводники — с другой. Компоненты, расположенные сверху, могут пересекать проводники, находящиеся снизу, поскольку они разделены изолирующим материалом платы. Но проводники на такой плате не могут пересекать друг друга.
Рис. 3.67. Темные линии — это провода на обратной стороне монтажной платы
Наиболее компактный вариант размещения компонентов, которого мне удалось добиться, показан на рис. 3.66. Размеры перфорированной платы составляют 23 на 33 мм. Если у вас получится устройство меньших размеров, пришлите чертежи мне. Вот некоторые идеи:
• Используйте резисторы, рассчитанные на 0,125 Вт, а не на 0,25 Вт.
• Устанавливайте резисторы вертикально.
• Если диаметр отверстий в плате позволяет, можно вставить два вывода в одно отверстие.
Рис. 3.68. На этом виде изображены только плата и проводники. Сквозные соединения показаны темным кружком
А где же соединения между компонентами? Они на другой стороне платы. Соединительные проводники отчетливо видны на рис. 3.67.
Если вы внимательно сравните рис. 3.67 со схемой, изображенной на рис. 2.111, то убедитесь, что все компоненты и соединения между ними идентичны, если только я не допустил ошибку. (Я надеюсь, что все правильно. Очень не хотелось бы перерисовывать.)
На рис. 3.68 показан еще один вид; на этот раз опущены компоненты, но обозначена плата, так что вы можете видеть, как соединения соответствуют сетке отверстий платы с шагом 2,5 мм.
И наконец, на рис. 3.69 изображена плата, перевернутая на обратную сторону, слева направо, так что вы смотрите на нее снизу. Это поможет вам соединить компоненты после их размещения на плате. Вы ведь попробуете, не так ли?
Рис. 3.69. Плата перевернута слева направо, это вид снизу
Согните провода, добавьте припой
План работ теперь ясен, осталось выполнить все запланированное. Перейдем к размещению компонентов на плате и пайке соединений.
Все не так уж сложно. Выводы компонентов, таких как резисторы, конденсаторы и транзисторы, обычно имеют длину не менее 1 см. Таким образом, вы можете просунуть их сквозь отверстия в плате, а затем согнуть так, чтобы они касались друг друга. После этого нужно спаять все соединения, а затем отрезать лишние концы. Остается подключить батарею питания — и дело сделано.
Три основных момента, на которые стоит обратить внимание:
• Чтобы плата оставалась неподвижной, пока вы с ней работаете, необходима аккуратность и терпение. Лучше всего закрепить плату в держателе.
• Компоненты и пайки окажутся очень близко друг к другу. Используйте медные зажимы «крокодилы», чтобы отвести тепло.
• Самое трудное — не перепутать выводы компонентов при переворачивании платы. Больше всего ошибок при монтаже возникает именно по этой причине. Будьте особенно внимательны и аккуратны.
Возможно, вы видели перфорированную плату, у которой вокруг каждого отверстия есть круглая медная площадка. Подходит ли она для этого устройства? Хотя медные площадки позволяют надежно закрепить компоненты, но могут также стать причиной короткого замыкания между близлежащими проводами. Я считаю, что в нашем случае лучше выбрать плату без излишеств, например такую, как изображена на рис. 3.22. Отверстия в некоторых перфорированных платах имеют больший диаметр, но для наших целей это несущественно.
Сборка шаг за шагом
Подробно шаг за шагом опишем процедуру сборки устройства.
Отрежьте от листа перфорированной платы кусок размером 23x33 мм. Вам не понадобится измерительная линейка. Просто посчитайте ряды отверстий платы. Можете воспользоваться миниатюрной пилкой или аккуратно разломить плату по линиям отверстий. Ножовка также подойдет. Я не рекомендую вам использовать пилу по дереву, потому что перфорированная плата часто содержит стекловолокно, которое может затупить инструмент.
Вставьте три или четыре компонента в отверстия платы, внимательно следя за тем, чтобы каждый из них оказался на своем месте. Переверните плату и подогните провода компонентов, чтобы закрепить их на плате и создать соединения, показанные на рис. 3.69. Если длина какого-либо проводника окажется недостаточной, вам потребуется добавить подходящий отрезок провода 22-го калибра (диаметр 0,64 мм) со снятой изоляцией.
Обрежьте лишние провода кусачками.
Спаяйте все соединения.
А теперь важный момент: проверьте каждую пайку с помощью увеличительного стекла и пошевелите провода удлиненными плоскогубцами. Если для надежного соединения не хватает припоя, заново нагрейте место пайки и добавьте припой. Если припой образовал соединение не там, где надо, ножом сделайте два параллельных надреза в припое и отскоблите небольшой участок между надрезами.
Как правило, я одновременно монтирую только три или четыре компонента, потому что если их становится больше, то возникает путаница. Если я припаял один компонент неправильно, то исправить такую ошибку несложно — при условии, что ошибка обнаружена раньше, чем припаяно еще много компонентов.
Разлетающиеся куски провода
При резке провода кусачками возникает большое давление, которое быстро достигает максимума, а потом прекращается. Это может привести к внезапному движению отрезанного куска провода. Одни провода довольно мягкие и не создают такого риска, но выводы транзисторов и светодиодов обычно более жесткие. Маленькие кусочки провода могут отскочить с высокой скоростью в непредсказуемом направлении, создавая реальную угрозу вашим глазам, когда вы находитесь слишком близко.
Обычные очки защитят вас при укорачивании выводов. Если вы не носите очки, то воспользуйтесь защитными пластиковыми очками.
Завершение работы
Для работы я всегда использую яркое освещение. При сборке и пайке это не роскошь, а необходимость. Купите настольную лампу, если у вас ее еще нет. Не обязательно выбирать дорогую лампу, подойдет и бывшая в употреблении.
Теперь я пользуюсь светодиодной настольной лампой дневного света, потому что она помогает мне надежнее определить цвет полосок резисторов. От люминесцентной настольной лампы я отказался, когда узнал о том, что любой незначительный дефект внутреннего покрытия лампы может пропускать ультрафиолетовое излучение. Когда вы работаете близко к такому источнику света, он представляет опасность.
Даже если у вас острое зрение, все равно рекомендую рассматривать каждое соединение под увеличительным стеклом. Вы будете удивлены, насколько неидеальны некоторые из них. Поднесите увеличительное стекло как можно ближе к глазу, а затем приблизьте плату, чтобы исследуемое соединение оказалось в фокусе.
В итоге у вас должна получиться работающая схема, которая выдает пульсирующий с частотой сердцебиения световой сигнал. Так и есть? Если с первого раза устройство не заработало, проверьте каждое соединение и сравните со схемой. Если ошибка так и не обнаружена, подайте питание, прикрепите черный провод мультиметра к отрицательной шине, а затем пройдитесь по схеме красным щупом, проверяя наличие напряжения. На каждом элементе схемы мультиметр должен показывать хоть какое-то рабочее напряжение. Если вы нашли «мертвый» участок, то, возможно, именно здесь плохая пайка или какая-то другая неисправность.
Теперь, когда вы все сделали, что дальше? А дальше вы перестаете быть любителем электроники и становитесь умельцем. Теперь подумайте, как сделать ваше устройство переносным.
Вначале нужно продумать питание. Для нормальной работы описанной схемы необходимо напряжение 9 В. Но все время носить с собой массивную 9-вольтовую батарею не слишком удобно.
Могу предложить три варианта:
• Можно положить батарейку в карман и прикрепить корпус устройства с наружной стороны кармана, пропустив провод через ткань.
• Можно прикрепить батарею внутри тульи бейсболки, а устройство поместить снаружи.
• Можно последовательно соединить три «пуговичных» элемента по 3 В, закрепив их каким-либо пластиковым зажимом. Однако я не уверен, что энергии такого источника хватит надолго.
Замечание
Должен отметить, что транзисторы серии 2N2222 в этом проекте не идеальны, поскольку они потребляют больше энергии, чем полевые транзисторы (МОП-транзисторы). Но в этой книге рассматриваются основы электроники, а биполярные n-p-n- транзисторы — самый распространенный полупроводниковый компонент.
Что касается выбора светодиода, то компоненты с прозрачной линзой создают узкий пучок света, который не подходит для наших целей. Компоненты в матовом корпусе создают более приятное свечение. Площадь свечения можно увеличить еще больше, поместив светодиод в рассеиватель из прозрачного акрилового пластика толщиной как минимум 6 мм, как показано на рис. 3.70. Наружную поверхность сделайте шероховатой с помощью мелкой наждачной бумаги или посредством ручной шлифовальной машинки, чтобы избежать появления царапин. В результате акрил станет полупрозрачным и свет будет еще сильнее рассеиваться.
С обратной стороны акриловой пластины просверлите глухое отверстие диаметром чуть больше, чем светодиод. Не сверлите пластик насквозь. Удалите из отверстия все остатки и пыль, продув его сжатым воздухом или промыв, если у вас нет воздушного компрессора. Хорошенько высушив полость, добавьте немного прозрачного силиконового уплотнителя или приготовьте некоторое количество прозрачной 5-минутной эпоксидной смолы и поместите каплю на дно углубления. Затем вставьте светодиод так, чтобы клей образовал надежное уплотнение.
Включите светодиод, оцените полученный результат и, если необходимо, зашкурьте акрил еще немного. И наконец, решите, как смонтировать остальную схему устройства: вплотную к рассеивателю или в стороне, соединив светодиод проводами.
Рис. 3.70. Рассеиватель для светодиода
Можно подобрать резисторы в схеме генератора так, чтобы светодиод мигал с частотой сердцебиения в состоянии покоя. Внешне будет казаться, будто приборчик измеряет пульс, особенно если вы прикрепите его на груди или ремешком на запястье. Если вы любите разыгрывать людей, то можете сказать, что вы в потрясающей форме, и частота вашего пульса постоянна, даже при физической нагрузке.
Могу предложить вам несколько вариантов корпуса для этого устройства, начиная от заливки прозрачной эпоксидной смолой и заканчивая поиском кулона в викторианском стиле. Я предлагаю вам проявить смекалку, поскольку эта книга об электронике, а не об изготовлении поделок. Тем не менее, есть одна тема, относящаяся к самоделкам, о которой я хочу упомянуть, и теперь самое время.
Измерения, которые сводят с ума
В электронной промышленности возникают противоречивые ситуации, когда в одном и том же техническом паспорте один параметр указан в миллиметрах, а другой в дюймах. Например, расстояние между штырьковыми выводами у современных микросхем для поверхностного монтажа измеряется в миллиметрах, а у старых микросхем для установки в монтажные отверстия это расстояние по-прежнему составляет 0,1 дюйма и, вероятно, таким и останется.
Ситуация усложняется еще и в связи с существованием двух различных систем единиц, кратных дюйму. Сверла, например, измеряются в значениях, кратных 1/64 доле дюйма. Металлические шайбы калибруются в 1/1000 долях дюйма (0,001 дюйма, 0,002 дюйма и т. д.). Чтобы еще больше усложнить жизнь, для толщины листов металла часто приводится «калибр»; например, сталь 16-го калибра подразумевает толщину в 1/16 дюйма.
Почему в США не перешли на метрическую систему, раз она намного более рациональна? Ее рациональность можно оспорить. Когда метрическая система была официально введена в 1875 году, метр определялся как одна десятимиллионная часть расстояния между северным полюсом и экватором, вдоль линии, проходящей через Париж. Почему Париж? Потому что идею предложили французы. С тех пор в серии попыток достичь большей точности при научных исследованиях определение метра пересматривалось три раза.
Что касается практичности десятичной системы, то перенос десятичной запятой определенно проще, чем выполнение вычислений с 1/64 долями дюйма, но единственная причина, по которой мы считаем десятками, — это возможность использовать пальцы рук для счета. Двенадцатеричная система была бы еще удобнее, поскольку числа делились бы нацело на 2 и 3.
Но все это относится к разряду гипотез. А реальность такова, что мы имеем дело с противоречивыми измерениями длины, и поэтому я предлагаю четыре диаграммы, которые помогут вам переводить единицы из одной системы в другую. Используя их, вы увидите, что для высверливания отверстия под светодиод диаметром 5 мм подойдет сверло диаметром 3/16 дюйма. (На самом деле, в результате получится более плотная подгонка по сравнению с отверстием, которое сделано при помощи сверла диаметром 5 мм.)
Пересчет между 1/64 и 1/100 долями дюйма поможет выполнить диаграмма, приведенная на рис. 3.71. Столбцы слева направо разделены на доли, кратные 8, 16, 32 и 64. На шкале справа указаны сотые доли дюйма. Как правило, если значение может быть точно выражено в более крупных единицах, мы используем этот вариант. Таким образом, вместо 8/64 дюйма можно выбрать вариант 1/8 дюйма. Это вызывает некоторую трудность, когда вы пытаетесь в уме прикинуть, какое из значений больше, например, больше ли 11/32 дюйма, чем 5/8? Здесь как раз и поможет предлагаемая диаграмма.
Поскольку в технических описаниях единицы измерений часто выражаются с помощью десятичных долей дюйма, вторая диаграмма (рис. 3.72) переводит значения между десятичными и 64-кратными долями дюйма. Если вам встретится такое значение, как 0,375 дюйма, то по диаграмме нетрудно определить, что оно равно 3/8 дюйма.
Во многих технических паспортах единицы указаны и в миллиметрах, и в дюймах, но в некоторых документах сейчас используют только миллиметры. Если вы пользуетесь дюймами и хотите узнать, поместится ли компонент в отверстие диаметром 1 /10 дюйма в макетной или перфорированной плате, то полезно помнить, что 1/10 часть дюйма равна 2,54 мм. Если компонент маленький, то расстояние между штырьковыми выводами в 2,5 мм приемлемо. Но когда расстояние между контактами составляет 25 мм и более, они могут не подойти к отверстиям, расстояние между которыми 25,4 мм (т. е. составляет дюйм или больше).
С помощью диаграммы на рис. 3.73 легко перевести миллиметры в сотые и 64-кратные доли дюйма. На рис. 3.74 приведена увеличенная версия предыдущей диаграммы, показывающая десятые доли миллиметра и тысячные доли дюйма.
За последние сорок лет в принятии метрической системы в США удалось добиться некоторого прогресса, однако должно пройти еще не одно десятилетие, чтобы переход завершился полностью. В то же время все, кто использует детали или инструменты, выпущенные или проданные в США, должны быть знакомыми с обеими системами. Другого пути нет.
Рис. 3.71. Диаграмма для перевода между 64-кратными и сотыми долями дюйма
Рис. 3.72. Диаграмма для перевода между десятичными и 64-кратными долями дюйма
Рис. 3.73. Диаграмма для перевода между американскими и метрическими величинами (в миллиметрах)
Рис. 3.74. Диаграмма для перевода между небольшими величинами в американской системе метрическими (в десятых и долях миллиметра)