Книга: Электроника для начинающих (2-е издание)
Назад: Эксперимент 9. Время и конденсаторы
Дальше: Эксперимент 11. Свет и звук

Эксперимент 10. Транзисторные переключатели

Теперь, когда вы изучили свойства конденсаторов, я перейду к другому важному компоненту: транзистору. После знакомства с его работой вы увидите, как конденсаторы и транзисторы могут быть использованы вместе.

Что вам понадобится

• Макетная плата, монтажный провод, кусачки, инструмент для зачистки провода, мультиметр
• Транзистор серии 2N2222 (1 шт.)
• Батарея 9 В и разъем (1 шт.)
• Резисторы номиналом 470 Ом (2 шт.) и 1 МОм (1 шт.)
• Подстроечный потенциометр на 500 кОм (1 шт.)
• Стандартный светодиод (1 шт.)

Сенсорный выключатель

Я выбрал транзистор серии 2N2222, который является самым распространенным полупроводниковым прибором всех времен (он был представлен компанией Motorola в 1962 году и до сих пор выпускается, в том или ином виде).
Поскольку патент компании Motorola на серию 2N2222 истек давным-давно, любой производитель может выпускать свой вариант этого транзистора. Некоторые компоненты помещены в маленький корпус из черной пластмассы, другие же заключены в небольшую металлическую «баночку» (см. рис. 2.23). Для наших целей подойдет любой корпус. Тем не менее, обратите внимание на предупреждение, которое я сделал ранее относительно маркировки транзисторов (см. ранее в этой главе раздел «Транзисторы»). Некоторые транзисторы серии 2N2222 отличаются от других, и вам нужно правильно выбрать компонент.
Рис. 2.89. Компоновка макетной платы для первого эксперимента с транзистором
Вставьте транзистор в макетную плату со светодиодом и резистором на 470 Ом, как показано на рис. 2.89. Убедитесь в том, что длинный вывод светодиода обращен влево, как отмечено символом «:+». Также проверьте, что пластмассовый корпус транзистора обращен плоской стороной вправо. Если у вас транзистор в металлическом корпусе, то лепесток, выступающий из корпуса, должен быть направлен вниз и влево.

 

Заметьте, что у двух проводов, расположенных в нижнем левом углу на плате, удалено чуть больше изоляции. Если у вас готовые перемычки, то нужно согнуть у каждой один из выводов так, чтобы на поверхности макетной платы оказался участок оголенного проводника перемычки.
Теперь самое интересное. Коснитесь пальцем оголенных участков двух перемычек, как показано на рис. 2.90, и наблюдайте за светодиодом. Если ничего не произошло, немного увлажните палец и попробуйте снова. Чем сильнее вы будете нажимать, тем ярче будет светить светодиод. Транзистор усиливает слабый ток, который протекает через ваш палец. Данный принцип положен в основу сенсорных кнопок.
Рис. 2.90. Прикоснитесь пальцем к оголенным участкам проводов и светодиод загорится

Никогда не касайтесь контактов двумя руками сразу

Демонстрация переключения кончиком пальца безопасна, если электрический ток проходит только через ваш палец. Вы даже не ощутите его, потому что напряжение батареи всего 9 В. Но гораздо опаснее, если вы коснетесь одного провода пальцем одной руки, а второго — пальцем другой руки. В результате электрический ток потечет через ваше тело. И хотя в этой схеме ток очень слабый и не представляет для вас реальной угрозы, никогда не следует дотрагиваться до электрических цепей одновременно двумя руками. Кроме того, если вы касаетесь проводов, не допускайте, чтобы они пронзали вашу кожу. Это также означает, что вы не должны прикладывать напряжение к любым металлическим украшениям, закрепленным в вашем теле.

Принцип действия сенсорного выключателя

Взгляните на рис. 2.91, где показаны только активные соединения внутри макетной платы и скрыты незадействованные в этом эксперименте. Обратите внимание на то, что нижний вывод транзистора соединен через макетную плату со светодиодом, а затем через резистор номиналом 470 Ом с отрицательной шиной. Таким образом, через транзистор к светодиоду может течь достаточный ток.
Рис. 2.91. Макетная плата сенсорного выключателя (показаны внутренние проводники)

 

Откуда же взялся этот ток? Небольшой ток прошел через кожу вашего пальца к центральному выводу транзистора. Но его явно недостаточно, чтобы зажечь светодиод.
Существует только одно подходящее объяснение. У транзистора есть еще третий вывод, изображенный сверху, который подключен к положительной шине питания. Электрический ток поступает в транзистор через этот вывод. А затем каким-то образом этот поток электричества управляется небольшим током, который поступает через ваш палец в центральный вывод транзистора. Сказанное иллюстрирует рис. 2.92.
Рис. 2.92. Принцип действия n-p-n-транзистора
Кстати, этот эффект сильно отличается от поведения конденсатора, которое вы наблюдали в предыдущем эксперименте. Конденсатор пропускал только короткий импульс электрического тока. Транзистор управляет непрерывно протекающим током.

Разновидности транзисторов

Компонент, который вы использовали в рассмотренном эксперименте — это биполярный транзистор. Он существует в двух вариантах: n-p-n и p-n-p. Транзистор n-p-n-структуры, с которым вы только что экспериментировали, образован тремя слоями кремния, из которых два л-слоя имеют избыток носителей отрицательного заряда. Третий слой, расположенный между первыми двумя, является p-слоем с избытком носителей положительного заряда. Я не буду вдаваться в подробности и рассказывать о физических процессах, происходящих в транзисторе. В этой книге гораздо важнее выяснить, что именно делает транзистор, а не привести теорию, которая объясняет его функционирование. Интересующие вас теоретические сведения можно самостоятельно отыскать в любой технической книге или в онлайн-источниках.
Три вывода биполярного n-p-n-транзистора называются «коллектором», «базой» и «эмиттером» (рис. 2.93).
Когда база n-p-n-транзистора оказывается немного более положительной, чем эмиттер, ток от положительного полюса источника питания поступает через коллектор и выходит через эмиттер. В этом случае очень слабый ток, поступающий в базу транзистора, может управлять более сильным током, проходящим через коллектор.
Рис. 2.93. Расположение трех выводов биполярного n-p-n транзистора в пластиковом (слева) и в металлическом (справа) корпусе
Транзистор p-n-p-типа работает противоположным способом. Ток поступает через эмиттер и выходит через коллектор к отрицательному полюсу источника, когда база немного отрицательнее, чем эмиттер. Транзисторы p-n-p-типа иногда оказываются более удобными, но они встречаются реже. Я не буду использовать их в книге.
Четыре варианта условного обозначения n-p-n- транзистора показаны на рис. 2.94. Все они функционально идентичны. Буквы С, В и Е соответствуют выводам коллектора, базы и эмиттера.
Четыре варианта условного обозначения p-n-p- транзистора приведены на рис. 2.95. Они тоже взаимозаменяемы.
Рис. 2.94. Варианты обозначений n-p-n-транзистора
Рис. 2.95. Варианты обозначений p-n-p-транзистора
Символы транзисторов p-n-p- и n-p-n-типа легко перепутать, но есть простой способ запомнить правильный вариант. Стрелка в символе n-p-n-транзистора указывает наружу и никогда внутрь. Поэтому можно считать, что обозначение n-p-n является сокращением фразы never pointing in («никогда не указывает внутрь»).

Добавляем потенциометр

Чтобы узнать больше о том, как работает транзистор, нам понадобится более стабильный компонент, чем кончик вашего пальца. С этой работой справится потенциометр, но не такой большой, с каким вы встречались ранее (см. рис. 1.11), а подстроечный потенциометр, изображенный на рис. 2.22.
Несмотря на то, что потенциометры различаются по форме и размеру, все они имеют три контакта. Функции выводов любого потенциометра одинаковы. Средний вывод всегда соединяется с движком внутри потенциометра, а два других вывода соединяются с каждым из концов внутренней резистивной дорожки.
Когда вы вставляете подстроечный потенциометр в макетную плату, каждый вывод должен подключаться к отдельному ряду отверстий платы. Это правило иллюстрирует рис. 2.96. В верхней части рисунка я нарисовал вид сверху для трех типов подстроечного потенциометра, включая многовитковый; и хотя я его не рекомендую, возможно, однажды вы с ним столкнетесь. Контакты не видны сверху, но я показал их расположение так, как если бы вы видели их сквозь компонент. Расположение контактов может быть разным, но их всегда три и они должны отстоять друг от друга на 2,5 мм по вертикали.
Изображенные в нижней части рисунка два примера «Да» будут работать, потому что каждый вывод соединен с отдельным рядом отверстий в макетной плате. Два примера «Нет» неприемлемы, потому что пара контактов окажется замкнутой друг с другом из-за наличия внутренних проводников макетной платы.
Рис. 2.96. Подстроечные потенциометры трех типов и примеры их установки на макетной плате
Рис. 2.97. Макет установки для исследования транзистора с помощью потенциометра
Разобравшись с устройством подстроечного потенциометра, мне хотелось бы, чтобы вы добавили потенциометр номиналом 500 кОм к вашей схеме с транзистором так, как показано на рис. 2.97. Подключите питание и с помощью небольшой отвертки поверните движок потенциометра до упора по часовой стрелке, а затем таким же образом против часовой стрелки. Заметьте, что если в начале эксперимента светодиод погашен, то при небольшом повороте винта потенциометра светодиод начинает светиться.
Рис. 2.98. Электрическая схема установки для исследования транзистора с помощью потенциометра
Рис. 2.99. Номиналы компонентов, установленных на макетной плате
Взглянем на схему, изображенную на рис. 2.98, где показаны те же соединения, что и на макетной плате, но в более понятном виде. Номиналы компонентов указаны на рис. 2.99.
Потенциометр подключен между положительной и отрицательной шинами питания. При таком подключении он работает в качестве делителя напряжения. Когда движок находится на одном конце дорожки, он подключается непосредственно к положительному полюсу источника питания. На другом конце дорожки он подключен напрямую к отрицательному заземлению. В промежуточных положениях он делит напряжение источника питания в некоторой пропорции. Потенциометры часто включают таким способом.
Я уже упоминал, что светодиод не зажигается, когда вы только начинаете перемещать движок потенциометра от минуса к плюсу. Наверное, вы считаете, что он не получает достаточно энергии? Не совсем так. Биполярный транзистор «удерживает» часть энергии в качестве «платы» за свои услуги. Он не будет реагировать, если напряжение на базе не станет выше, чем напряжение на эмиттере примерно на 0,7 В. Говорят, что в таком режиме транзистор обладает положительным смещением. Сказанное иллюстрирует рис. 2.100.
Рис. 2.100. Основное правило использования n-p-n-транзистора

Напряжение или сила тока?

Вы видели, что напряжение на базе биполярного транзистора управляет выходным током этого транзистора. Означает ли это, что транзистор усиливает напряжение?
Вы можете выяснить это самостоятельно. Возьмите мультиметр, настройте его на измерение напряжения и соедините отрицательный щуп с отрицательной шиной макетной платы тестовым проводом, как показано на рис. 2.101. Прикоснитесь красным щупом к выводу эмиттера транзистора, запишите напряжение и переместите щуп на вывод базы. Я гарантирую, что напряжение на эмиттере будет ниже, чем на базе.
Рис. 2.101. Макет установки для выяснения вопроса, усиливает ли транзистор напряжение
Установите подстроечный потенциометр в другое положение и попробуйте снова. Независимо от того, насколько вы изменили напряжение на выводе базы, напряжение на выводе эмиттера всегда будет ниже.
Возможно, это вызвано тем, что резистор с номиналом 470 Ом не обеспечивает достаточного сопротивления между эмиттером транзистора и отрицательной шиной? Мог ли резистор понизить напряжение?
Давайте разбираться. Удалите светодиод и резистор 470 Ом, включив между эмиттером транзистора и отрицательным заземлением резистор с номиналом 1 МОм. Картина не сильно изменилась. Напряжение на эмиттере по-прежнему будет ниже, чем на базе.
Если у вас возникнет желание проверить силу тока на базе и на выходе эмиттера, то выяснится нечто совсем другое. Для этого опыта следует установить мультиметр на измерение силы тока в миллиамперах и встроить его в схему на соответствующем участке. Вспомните о том, что для измерения силы тока его необходимо пропустить через мультиметр.
Однако я могу заранее сказать вам, что вы обнаружите. Этот конкретный транзистор усиливает ток, поступающий на базу, с коэффициентом более 200:1. Данная величина называется коэффициентом передачи тока Ддля транзистора.
В итоге мы пришли к фундаментальному факту: биполярный транзистор усиливает ток, а не напряжение.
В моей книге Make: More Electronics вы найдете больше сведений по рассматриваемой теме. Здесь я упоминаю об этом лишь вкратце.
Теперь, в качестве справки для вас, я подытожу сведения о биполярных транзисторах.

Все о n-p-n и p-n-p-транзисторах

Транзистор — это полупроводниковый прибор, а полупроводник представляет собой нечто среднее между проводником и изолятором. Эффективное внутреннее сопротивление транзистора меняется в зависимости от напряжения, которое вы подаете на его базу.
Все биполярные транзисторы имеют три вывода: коллектор, базу и эмиттер, которые в технических паспортах обозначаются латинскими буквами С, В и Е.
• Транзисторы n-p-n-типа открываются положительным напряжением на базе по отношению к эмиттеру.
• Транзисторы p-n-p-типа. открываются отрицательным напряжением на базе по отношению к эмиттеру.
В закрытом (неактивном) состоянии оба транзистора прерывают ток между коллектором и эмиттером подобно однополюсному реле на одно направление с нормально разомкнутыми контактами. (На самом деле транзисторы пропускают очень слабый ток, называемый током утечки.)
Расположение транзистора на схемах может быть различным. Эмиттер может быть вверху, а коллектор внизу или наоборот. База может быть слева или справа, в зависимости того, что было удобнее тому, кто рисовал схему. Внимательно смотрите на стрелку транзистора, чтобы понять к какому типу он относится: n-p-n или p-n-p. Помните, что вы можете повредить транзистор, если подключите его неправильно.
Транзисторы бывают разных размеров и в различных корпусах. Для большинства из них невозможно сразу понять, какой из выводов подключен к эмиттеру, коллектору или базе. Чтобы выяснить это, вам может потребоваться заглянуть в технический паспорт производителя.
Если вы забыли назначение выводов, многие мультиметры имеют функцию определения эмиттера, коллектора и базы. Обычно это четыре отверстия, обозначенные буквами Е, В, С и Е. Если вы вставите вывод эмиттера в любое из отверстий, обозначенное буквой Е, вывод базы — в отверстие В, а вывод коллектора — в С, то мультиметр покажет коэффициент (3 для транзистора. При любых других вариантах подключения показания мультиметра будут нестабильными, пропадут, станут равны нулю или окажутся гораздо ниже, чем должны быть (практически всегда ниже 50, а чаще всего ниже 5).

Транзистор — чувствительный компонент!

Не забывайте, что повредить транзисторы очень легко, и как правило, повреждение будет необратимым.
• Никогда не прикладывайте напряжение напрямую через любые два вывода транзистора. Вы можете сжечь его слишком сильным током.
• Всегда ограничивайте ток, протекающий между коллектором и эмиттером транзистора с помощью резисторов, подобно тому, как вы защищали светодиод.
• Не подавайте напряжение в обратном направлении. Коллектор n-p-n-транзистора всегда должен быть положительнее, чем база, которая, в свою очередь, должна быть положительнее, чем эмиттер.

История появления транзистора

Хотя некоторые историки отслеживают происхождение транзистора со времени изобретения диодов (которые пропускают электрический ток в одном направлении и препятствуют обратному току), первый работающий и полностью функциональный транзистор был создан в компании Bell Laboratories («Лаборатории Белла») в 1948 году Джоном Бардином (John Bardeen),
Уильямом Шокли (William Shockley) и Уолтером Браттейном (Walter Brattain).
Шокли возглавлял группу исследователей и предвидел, насколько потенциально важным может стать полупроводниковый переключатель. Бардин был теоретиком, а Браттейн, собственно, и добился того, что все заработало. Сотрудничество было весьма продуктивным, пока цель не оказалась достигнутой. С того момента Шокли начал хитрить, чтобы запатентовать транзистор только под своим именем. Когда он уведомил об этом своих коллег, они, естественно, не обрадовались.
Не помогла и широко распространенная фотография, на которой Шокли сидел в центре за микроскопом, как если бы он выполнял всю практическую работу, в то время как двое коллег стояли позади него, что подразумевало их второстепенную роль. Копия этой фотографии появилась на обложке журнала Electronics (рис. 2.102). На самом деле Шокли, как руководитель, редко появлялся в лаборатории, где была проделана вся работа.
Рис. 2.102. На переднем плане — Уильям Шокли, позади Джон Бардин, справа Уолтер Браттейн. За создание первого в мире работоспособного транзистора в 1956 году им была присуждена Нобелевская премия
Продуктивное сотрудничество быстро распалось. Браттейн попросил перевести его в другую лабораторию в компании AT&T. Бардин перебрался в Университет штата Иллинойс, чтобы заниматься теоретической физикой. Шокли в конечном итоге оставил Bell Labs и основал компанию Shockley Semiconductor в местности, которая впоследствии стала называться Silicon Valley («Кремниевая долина»), но его амбиции опережали возможности технологий того времени. Его компания так никогда и не выпустила рентабельный продукт.
Восемь сотрудников из фирмы Шокли предали его, уволившись и основав свое дело, компанию Fairchild Semiconductor, которая стала весьма успешным производителем транзисторов, а позже — интегральных микросхем.

Транзисторы и реле

Единственный недостаток транзисторов состоит в том, что для их работы постоянно нужна энергия, в отличие от реле, которые могут находиться в выключенном состоянии совсем без подачи питания.
Реле также обеспечивают больше возможностей коммутации. Различные конфигурации контактов могут быть нормально разомкнутыми, нормально замкнутыми или блокироваться в любом положении. Реле может иметь переключатель на два направления, что обеспечивает замыкание то одной, то другой ветви цепи. Существуют реле с двухполюсным переключателем, который замыкает (или размыкает) две полностью гальванически развязанных цепи. Устройства с одним транзистором не могут обеспечить два направления или два полюса, хотя можно спроектировать более сложные схемы, которые имитируют такое поведение.
Сравнение характеристик транзисторов и реле приведено в табл. 2.3. Как видим, решение об использовании реле или транзистора зависит от конкретного применения компонента.
Таблица 2.3
Но хватит теории! Давайте заставим работать транзистор так, чтобы это было не только увлекательно, но и познавательно. Приступим к эксперименту 11.
Назад: Эксперимент 9. Время и конденсаторы
Дальше: Эксперимент 11. Свет и звук