Книга: Курс на Марс. Самый реалистичный проект полета к Красной планете
Назад: Межпланетная торговля
Дальше: Продажа марсианской недвижимости

Заселяя Марс

Из-за сложности межпланетных путешествий колонизация Марса может казаться невыполнимой задачей. Однако колонизация, по определению, есть путешествие в один конец, и именно тот факт, что колонии в новом мире необходимо обеспечить успех, позволит транспортировать большие количества людей.
Рассмотрим две модели того, как люди могли бы эмигрировать на Марс: при государственном и частном финансировании.
Государственное финансирование сделало бы технические средства, необходимые для массового переселения на Марс, доступными уже сегодня. На рисунке 8.1 мы видим одну из версий концепции, которую можно использовать для транспортировки мигрантов на Марс. Тяжелая ракета-носитель на базе конструкции шаттла поднимает 145 тонн (почти как у «Сатурн-5») на НОО, затем ядерная ракета (например, такая, какую продемонстрировали в Соединенных Штатах в программе NERVA в 1960-х годах) с удельным импульсом в 900 секунд забрасывает 70-тонный обитаемый модуль повышенной вместимости на семимесячную траекторию к Марсу. Прибыв на Марс, модуль использует свою коническую оболочку как систему парашютов для аэродинамического торможения, а затем спускается с помощью более или менее обычного парашюта и производит посадку, используя собственный набор метаново-кислородных двигателей.
Увеличенный жилой модуль имеет 8 метров в диаметре и состоит из четырех жилых этажей общей площадью 200 квадратных метров, что позволит удобно разместить 24 человека и во время пребывания в космосе, и на Марсе. Дополнительная площадь доступна на пятом (верхнем) этаже, после того как тот освободят от груза по прибытии на Марс. Таким образом, за один запуск ракеты-носителя с Земли к Марсу можно отправить 24 человека, снабженных продовольствием и инструментами.
Теперь предположим, что начиная с 2030 года каждый год с Земли в среднем запускаются четыре такие ракеты-носителя. Если далее мы введем несколько обоснованных демографических предположений, можно будет рассчитать демографические кривые для Марса. Результаты показаны на рис. 8.2. Рассматривая график, мы видим, что при таких усилиях (и с технологическим оснащением, замороженным на уровне начала XXI века) человеческая популяция Марса в предстоящем столетии будет расти приблизительно в пять раз медленнее, чем население колониальной Америки в XVII и XVIII веках.

 

Рис. 8.1. Увеличенная ядерная тяжелая ракета-носитель, способная транспортировать с Земли на Марс 24 колониста

 

Это само по себе очень важный результат. Это означает, что расстояние до Марса и задача транспортировки, с ним связанная, не станут основным препятствием для человеческой цивилизации на Красной планете. Скорее, ключевыми будут вопросы использования ресурсов, выращивания еды, строительства жилья и изготовления различных полезных товаров на поверхности Марса (об этом мы уже говорили в главе 7). Более того, прогнозируемые темпы роста населения хоть и не очень велики, но в историческом масштабе выглядят довольно значительно. И если предположить, что запуск обойдется в 1 миллиард долларов, программу стоимостью в 4 миллиарда долларов в год в течение какого-то времени могла бы стабильно финансировать любая крупная земная держава.
Однако при цене запуска около 1 миллиарда долларов расходы на одного иммигранта будут составлять 40 миллионов долларов. Такие расходы по силам государству (какое-то время), но не частным лицам или группам. Если мы хотим построить марсианское общество на энтузиазме и энергии большого числа иммигрантов, стремящихся оставить свой след в новом мире, плата за перевозку должна будет стать значительно ниже. Поэтому давайте изучим альтернативную модель, чтобы понять, как можно сделать ее более выгодной.

 

Рис. 8.2. Колонизация Марса по сравнению с колонизацией Северной Америки. Анализ предполагает, что число иммигрантов составит 100 человек в год, начиная с 2030-го, и каждый год будет увеличиваться на 2 %, количество мужчин и женщин среди них одинаково. Возрасты всех иммигрантов от 20 до 40 лет. Предполагается, что средняя рождаемость составит 3,5 ребенка на семью, а уровень смертности – 0,1 % в год для возраста от 0 до 59 лет, 1 % в год для возраста от 60 до 79 лет, 10 % в год для тех, кто старше 80 лет

 

Еще раз рассмотрим нашу РОСД на смеси метана и кислорода, используемую для транспортировки полезной нагрузки с поверхности Земли до низкой околоземной орбиты. Для доставки на орбиту каждого килограмма полезной нагрузки требуется около 70 килограммов топлива. Затраты на двухкомпонентное метаново-кислородное топливо составят около 20 центов за один килограмм, так что доставка к орбите каждого килограмма груза на топливо обойдется в 14 долларов. Если затем мы предположим, что расходы на функционирование всей системы будут в семь раз выше расходов на топливо (примерно в два раза больше соотношения «общая стоимость/стоимость топлива» для авиакомпаний), то стоимость доставки на НОО может составлять около 100 долларов за килограмм. Давайте предположим, что есть космический корабль, постоянно курсирующий между Землей и Марсом, который повторно использует воду и кислород с эффективностью в 95 %. Такие межпланетные «челноки», предложенные астронавтом «Аполлон-11» Баззом Олдрином в качестве основного транспорта для маршрута Земля – Марс, позволяют с комфортом перевозить множество людей, поскольку такие аппараты достаточно запустить лишь один раз, при этом полет в оба конца будет занимать 2,2 года и повторяться практически бесконечное количество раз. Купив билет на такой «челнок», каждый пассажир с 100 килограммов личных вещей вынужден будет взять около 400 килограммов продовольствия, чтобы обеспечить себя пищей, водой и кислородом во время 200-дневного полета на Марс. Таким образом, понадобится перевезти 500 килограммов со скоростью ΔV около 4,3 километра в секунду, чтобы переместить иммигранта с НОО Земли на челночный межпланетный космический корабль. Капсула, используемая для транспортировки иммигрантов с НОО к «челноку» и с «челнока» на поверхность Марса, вероятно, должна иметь массу из расчета 500 килограммов на одного пассажира. Таким образом, на орбиту «челнока» нужно доставить для каждого пассажира в общей сложности 1000 килограммов, что при удельном импульсе в 380 секунд для метаново-кислородной двигательной системы на транспортной капсуле переводится в 3200 килограммов на низкой околоземной орбите. При цене доставки на НОО в 100 долларов за килограмм и в предположении, что стоимость самого «челнока» амортизируется за очень большое число миссий, затраты на одного пассажира, летящего на Марс, составят 320 000 долларов.
Очевидно, что в приведенном выше расчете я сделал много предположений и изменение этих условий может значительно повлиять на цену билета. Например, использование прямоточного воздушно-реактивного двигателя (ПВРД) сверхзвукового самолета, для того чтобы получить значительную часть ΔV по пути с Земли на НОО, может сократить затраты на доставку к орбите в тысячу раз. Чтобы поднять транспортную капсулу почти до вывода из поля силы тяжести Земли, можно использовать ракету с электрическим двигателем, после чего капсула будет сброшена, чтобы выполнить управляемый пролет на небольшом расстоянии от Земли с использованием разгонного блока на химическом топливе. Это позволит ей уйти с орбиты и достичь «челнока» с ΔV, развитой химическим двигателем, всего лишь в 1,3 километра в секунду, тем самым полезная нагрузка удваивается, а затраты снижаются. Если «челнок» оснащен магнитным парусом (см. дополнительный раздел в конце главы), а не движется по естественным межпланетным орбитам с помощью гравитационных маневров, гиперболическая скорость капсулы для отправления с Земли, требуемая для стыковки с «челноком», может равняться нулю, что позволит преодолеть весь путь с НОО Земли к челноку с помощью электрического реактивного двигателя, или, предположительно, даже с помощью солнечных или магнитных парусов. Если увеличить эффективность системы жизнеобеспечения на «челноке» с базовых 95 % повторного использования воды и кислорода до 99 %, можно будет везти меньше продовольствия, что опять же снизит затраты. Таким образом, есть основания ожидать, что транспортные расходы по маршруту Земля – Марс снизятся еще на порядок, примерно до 30 000 долларов на пассажира. Изменения стоимости перевозки, которые произойдут благодаря постепенному введению каждой из этих инновационных концепций, показаны в табл. 8.3.

 

Таблица 8.3. Возможные сокращения стоимости системы транспортировки по маршруту Земля – Марс

 

Тем не менее сумма в 320 000 долларов для первых иммигрантов довольно интересна. Это не те деньги, которые легко просто взять и потратить, но это сравнимо со стоимостью дома из тех, в которых живет верхушка среднего класса в американских пригородах. Такую сумму люди могут потратить, если очень захотят. А почему они захотят? Примерно по следующей причине: из-за малого населения Марса и большой стоимости собственно транспортировки, несомненно, труд на Марсе будет обходиться намного дороже, чем на Земле. Поэтому и заработная плата может оказаться значительно выше. В то время как на Земле инженер заработает 320 000 долларов приблизительно за шесть лет, на Марсе, скорее всего, он получит ту же сумму за два года. Эта разница, аналогичная той, что существовала между доходами в Европе и Америке в течение большей части последних четырех столетий, может сделать эмиграцию на Марс желанной и достижимой целью для отдельного человека. С XVII по XIX век многие европейские семьи откладывали средства на то, чтобы один из членов семьи мог эмигрировать в Америку. Такой эмигрант, в свою очередь, копил деньги на то, чтобы перевезти к себе родных. Сегодня к тому же способу прибегают иммигранты из стран третьего мира, где заработная плата может быть гораздо меньше цены авиабилета. Поскольку, чтобы заработать на Марсе, туда нужно сначала добраться, поездку можно оплатить в кредит. Так поступали в прошлом, почему бы не поступить так и в будущем?

 

Рис. 8.3. Со временем база на Марсе вырастет в настоящее поселение, начало новой ветви человеческой цивилизации. (иллюстрация Роберта Мюррея, «Марсианское общество»)

 

Как упоминалось ранее, нехватка рабочей силы послужит марсианской цивилизации стимулом для технологического и социального развития. Если вы платите зарплату в пять раз больше земной, вы не захотите тратить время ваших подчиненных на ручной труд в теплицах или заполнение форм, и вы не станете строить бюрократических препятствий тому, кто обладает нужными навыками. Короче говоря, марсианская цивилизация будет практичной, поскольку ей придется быть такой, как пришлось американской цивилизации в XIX веке. Этот вынужденный прагматизм даст Марсу огромное преимущество в конкурентной борьбе с менее напряженным и, следовательно, более связанным традициями обществом оставшейся позади Земли. Если необходимость – мать изобретательности, то Марс обеспечит колыбель. Общество фронтира, основанное на технологическом совершенстве и прагматизме и состоящее из людей, которые сами развили в себе инициативность, обязательно породит множество изобретателей. Их изобретения будут удовлетворять потребности не только Марса, но также и земного населения. Поэтому они станут приносить Марсу доход (через предоставление земных лицензий) и в то же время препятствовать стагнации, к которой склонно земное общество с его избытком рабочей силы. Этот процесс оздоровления, как мы обсудим в последующих главах, в конечном счете станет наибольшим преимуществом, которое колонизация Марса предложит Земле. И больше всего выиграют те земные общества, которые имеют самые тесные социальные, культурные, языковые и экономические связи с марсианами.
Назад: Межпланетная торговля
Дальше: Продажа марсианской недвижимости