Эпигенетика и рак
Давайте подробнее разъясним то, что известно о раке и генах. Возможно, нет заболевания, которое бы полагалось на генетически обусловленные риски больше, чем рак. Чтобы объяснить причину, нам придется вернуться к одному моменту. Как мы уже упоминали, еще в период учебы в Гарвардской медицинской школе Руди принял активное участие в первом исследовании, целью которого было обнаружить гены, которыми обусловлено заболевание неясной этиологии (болезнь Хантингтона). Когда в начале 1980-х гг. начали проводить первые исследования с применением генетического анализа, существовала надежда, что все загадки наследственных заболеваний удастся разрешить расшифровкой генома больных людей и сравнением его с геномом людей здоровых. В этом огромном комплексе из 6 миллиардов сочетаний букв А, Г, Ц и Т, которые мы наследуем от родителей, только около 200 миллионов образуют гены. Эти немногочисленные гены напоминают слова в истории жизни, которую излагает геном. Оставшиеся 5,8 миллиарда букв служат в качестве связующих компонентов и знаков препинания между этими словами и создают возможность для многочисленных вариантов одной и той же истории. По большей части после того, как удалось обнаружить гены, которыми обусловлена болезнь Хантингтона, в период с 1990 по 2010 гг., генетики искали ведущие к заболеванию мутации только в последовательности ДНК генов, как опечатку истории. Но теперь эпигенетика говорит нам, что основная часть истории кроется в межгенной ДНК, той части генома, которую мы зовем «мусорной ДНК». Эти участки определяют, как читать историю и какие главы в ней важнее всего.
В передовой статье журнала «Nature» с первыми появившимися данными проекта «Дорожная карта эпигенома человека» говорилось: «При заболеваниях, которые развиваются у человека, геном и эпигеном действуют вместе. Работа с заболеванием при использовании данных только о геноме похожа на попытку действовать, когда одна рука скована за спиной. Обретение данных эпигенома освобождает вторую руку. Они не дадут ответов на все вопросы, но могут помочь исследователям принять решение, какой вопрос задать». Оказывается, наиболее известные генетически обусловленные заболевания невероятно сложны, и риск развития той или иной болезни определяет множество совокупных факторов, от мутаций генома, которые мы унаследовали от родителей, до эпигенетических изменений, обусловленных жизненным опытом.
В «борьбе против рака», которая длится уже не один десяток лет, определенно появился некий прогресс. Но, по данным Американского онкологического общества на 2015 г., у более 1,6 миллиона американцев в год диагностируют рак, а около 700 000 человек умирает от всех видов рака. Именно исследования рака привели к невероятному прогрессу в понимании генетических мутаций, которыми обусловлено заболевание. И сейчас существует мнение, что развитие рака происходит из-за многочисленных мутаций генов, в результате которых клетки становятся раковыми и образуют опухоли разных видов. Однако нам известно, что риск развития рака также зависит от того, как эпигенетические изменения касаются определенных участков генома, которые более склонны к образованию мутаций. (Фактически убеждение о важности роли эпигенетики в развитии заболевания сформировалось по результатам исследования раковых заболеваний.) Эти мутации могут быть результатом воздействия тех или иных токсинов, содержащихся в окружающей среде, например диоксина, смертоносной разновидности химических соединений, которые входят в состав пестицидов или выделяются при сжигании промышленных отходов и для которых не существует безопасных доз. По оценкам Агентства по охране окружающей среды США, вред от диоксина превосходит вред от ДДТ в 1960-е гг. Содержащийся в окружающей среде токсин может быть способен вызывать новые эпигенетические изменения. Это может изменить способ складывания геномной ДНК на этом участке, что может предопределить, где появятся новые мутации.
Таким образом, формирование опухолей включает в себя многочисленные этапы, в том числе генетические и эпигенетические изменения в геноме. В отличие от генных мутаций, эпигенетические изменения можно рассматривать как непостоянные и обратимые. Некоторые формы рака вызваны генами, которые активируются в результате процесса под названием «гипометилирование» («гипо» – греческая приставка со значением «недо»). В этом случае метки метилирования на генах, останавливающие их активность, каким-то образом пропадают. Без супрессора, который может обратить процесс, активируются вредоносные гены. В других случаях процесс обращается вспять. Прекращение активности определенных генов в результате метилирования может привести к формированию опухолей или добавлению ацетильных групп к гистонам, которые окружают ДНК.
На сегодняшний день разрабатываются новые лекарственные препараты, которые могли бы нейтрализовать эпигенетические изменения, ведущие к формированию опухолей. Например, препараты, известные как ингибиторы ДНК-метилтрансферазы, действуют как средство деметилирования и способны удалять метильные метки с генов. Эти препараты уже успешно применяются для лечения некоторых форм лейкемии. Другие препараты, известные как ингибиторы гистонацетилазы, также применяются при лечении лейкемии и лимфомы. Разумеется, применение этих препаратов не обходится без проблем, поскольку их воздействие на геном крайне специфично. И, несмотря на их относительно успешное применение при лечении рака крови, они пока не слишком эффективны в качестве лекарства против плотных опухолей. Но мы все же надеемся на лучшее, в том числе на усовершенствование этих новых препаратов. Кроме того, мы считаем необходимым провести исследование о влиянии образа жизни и его изменения, например, в пользу здорового питания, управления стрессом, контроля веса и т. д., с целью выяснить, принесут ли эти изменения аналогичные результаты.
СЛУЧАЕН ЛИ РАК?
Случайность – больше чем теоретический вопрос, поскольку она привносит в жизнь человека множество страданий. Двадцать лет назад считалось, что рак случаен и почти все рискуют одинаково. Генетики дополнили общественное восприятие рака как болезни, которая беспощадно убьет любую выбранную жертву. Началось противопоставление аргументов. Те, кто был уверен, что рак вызывают токсины, указывали на табак и асбест в качестве основных примеров. Другие отстаивали позицию вирусов и приводили в пример рак шейки матки, который возникает из-за вируса папилломы человека (ВПЧ). Оказалось, что у каждого в руках была часть правильного ответа, как сказал один эксперт по раковым заболеваниям, оба лагеря были похожи на двух незрячих людей, которые держались за два разных конца ответа.
Нынешний взгляд возвращает нас к уже знакомому образу – облаку причин. Безусловно, токсины в окружающей среде, вирусы и случайные мутации играют важную роль, но, как и в случае с ответом на вопрос, почему голландцы внезапно стали самыми высокими людьми в мире, это облако не слишком хорошо помогает связать причину и следствие. Единственное, о чем можно заявить с уверенностью: все пути в конечном итоге ведут к геному. Рак любого вида развивается из особого гена внутри самой клетки (онкогена). Таких генов существует много, и в последние годы их систематизировали и внесли в Онкологический атлас в рамках работы по составлению полной карты этого заболевания. Но одной активности онкогена недостаточно. Нужно еще прекратить активность гена-онкосупрессора, который обладает противоположным действием.
Некоторым видам опухолей требуются годы, а то и десятки лет на развитие после того, как запустился механизм их формирования и началось аномальное деление клетки.
Если речь заходит о переключении возникновения и прекращения активности генов, эпигенетика вписывается в систему так же, как и вопросы о случайности, поскольку события, за которыми следует переключение, могут быть совершенно не случайными. Табакокурение – не случайное событие. Если вы курите, то у вас появляется высокая вероятность развития рака легких. Но эпигенетическое объяснение рака легких связано с большим количеством проблем и их решений. Начнем с того, что напрасная надежда на то, что рак может быть обусловлен только одним геном, которая не оправдалась еще тридцать лет назад, снова повторяется в эпигенетике – оказывается, притом что одна генная мутация может вести к определенному виду рака, за эту болезнь отвечают от 50 до 100 генов. Мутация онкогенов может продолжиться с распространением рака, что делает его быстрой и трудноуловимой целью. О генно-ориентированных лекарственных препаратах много говорят, так как они помогают излечить определенные виды рака, например, одну из форм лейкемии у детей, которая обусловлена одним геном.
За двадцать лет поисков подобных лекарств, которые были бы эффективны против различных видов рака, успех, которого удалось достичь, крайне невелик. Хуже того, эффект препаратов, с помощью которых удается полностью избавиться от всех проявлений рака, трагически недолгий. Через несколько месяцев рак возвращается снова. При поверхностном взгляде может показаться, что секретное оружие рака в том, как быстро и беспорядочно он может мутировать, что поддерживает догмы эволюционистов о ведущей роли случайности.
Но есть знаки, которые указывают в ином направлении. Из всех болезней ни одна, кроме рака, не имеет столь очевидной связи с эпигенетическими отклонениями. Эпигеном определенного типа раковых клеток несет в себе отпечаток той же самой клетки, с которой начался рак. Это помогает обнаружить ткань, в которой рак появился, независимо от того, в какой части тела она находится. Эта информация может быть чрезвычайно полезна в будущем при диагностике и лечении рака, поскольку при распространении опухоли становится сложно отследить, где появился самый первый очаг. Раковые клетки могут постоянно мутировать, и это только усугубляет проблему. Хотелось бы надеяться на то, что, сравнив эпигеном здоровых и раковых клеток, мы сможем лучше понять, как можно повлиять на риск развития заболевания помимо генома, который мы наследуем от родителей.
На основе тщательного анализа меток (метилирования и ацетилирования) можно довольно точно спрогнозировать, какой именно вид рака может развиться. Это может стать серьезным аргументом против случайности мутаций. В зависимости от того, как вы живете (окружающая среда вместе с жизненным опытом химически определяют активность ваших генов, о чем мы уже достаточно писали), могут появиться новые мутации, идентичные для каждой клетки опухоли определенного типа. Итак, эпигенетические изменения могут привести к появлению новых предсказуемых мутаций. Предсказуемость – важный шаг в сторону от абсолютной случайности.
Однако этот уровень предсказуемости не решает всей загадки. По аналогии подумаем о погоде. Летним августовским днем наиболее возможны грозы, и их можно предсказать достаточно точно – если днем жарко, то гроза наверняка будет во второй половине дня или вечером, а не прохладным утром. Но точное движение воздушных потоков, облачность и влажность воздуха предсказать куда сложнее, и если вы захотите узнать причину той или иной грозы до последней молекулы, это невозможно. При раковых заболеваниях многие мутации часто происходят одновременно, и не все они приводят к печальному результату. Появляется множество крайне непредсказуемых возможностей. (То, что нельзя предсказать, не означает случайность. Следующая мысль, которую вы подумаете, не случайна, но она непредсказуема. Исследователям рака только предстоит выяснить, уместна ли эта аналогия в его случае.)
Это сложно принять после великолепных открытий о генетической природе рака. Онкологи начали говорить о том, что рак – коварный враг, чей защитный арсенал усовершенствуется каждый раз, как только удается найти новое действенное средство против него. (Яркий пример справедливости этого утверждения – предыдущая глава, в которой мы писали, что рак, к сожалению, может использовать всю информацию, которая содержится в клетке.) Теперь у нас снова появилась надежда, поскольку составители Онкологического атласа выясняют, какие мутации опасны, но, что не менее важно, наилучший ключ к избавлению от этой болезни состоит в том, что рак развивается по некоему количеству установленных путей, которых на самом деле очень мало – примерно около десятка для каждой разновидности рака. Другими словами, существует схема, которая окончательно подрывает ортодоксальный взгляд на случайность мутаций.
Одно из многообещающих открытий состоит в том, что некоторым видам опухолей требуются годы, а то и десятки лет на развитие после того, как запустился механизм их формирования и началось аномальное деление клетки. Идея заключается в том, что определенная последовательность – генетический путь, по которому идет аномальная клетка, – подразумевает несколько этапов, которые следуют один за другим по порядку. Вот вам аналогия: вы, возможно, видели небольшие игрушки, в которых маленькие стальные шарики катаются по доске с проделанными в ней отверстиями, и цель игры – наклонять доску так, чтобы закатить все шарики в отверстия. Отверстия маленькие, так что добиться этой цели непросто. А теперь представьте, что раковой мутации нужно сделать то же самое. Она должна проделать свой путь через небольшое отверстие (определенное генетическое изменение из миллиардов возможных), чтобы перейти на следующий этап. Как только ей это удастся, перед ней возникает новое отверстие в виде следующей мутации и выбор из многих миллиардов и т. д.
Если рак развивается медленно, как некоторые типы рака предстательной железы или толстой кишки, ему может потребоваться 30–40 лет на то, чтобы раковая клетка прошла всю последовательность. Существует надежда на то, что его можно будет отследить на максимально ранних стадиях, обнаружив предсказуемый отпечаток эпигенетических меток, и тогда рак удастся победить задолго до того, как проявятся его первые симптомы. Этот проблеск света в конце туннеля появился еще с того времени, когда открыли, что точную разновидность генной мутации для многих типов опухолей теперь можно предсказать по эпигеномной сигнатуре типа клетки, из которой с высокой вероятностью развился рак.
Затем мы должны по крайней мере задать себе вопрос, возможно ли, что при возникновении эпигенетических мутаций у взрослых в результате воздействия токсинов, стресса, травм, неправильного питания и т. д. в определенных клетках возникнут новые предсказуемые мутации? Если мутации возникают в сперматозоидах и яйцеклетках, перейдут ли они к следующему поколению? Нам это пока не известно. Но даже сама эта возможность заставила бы Дарвина отрицательно покачать головой, а сегодня заставляет серьезно пересмотреть его теорию.
Если эпигенетические изменения действительно ведут к определенным мутациям, помимо тех, которые становятся причиной формирования опухолей, может ли образ жизни человека и среда, в которой он живет, хотя бы теоретически, повысить предсказуемость? Могут существовать эпигенетические сигнатуры и других хронических заболеваний, которые возникают задолго до проявления первых симптомов. Было бы куда интереснее, если бы их можно было предотвратить у еще не рожденных поколений, которые наследуют эти признаки в утробе матери. На момент написания этой книги эти вероятности – всего лишь домыслы. Однако интересно подумать, что обнаружится в результате будущих исследований в этой области.
Токсины окружающей среды и эпигенетика
Сейчас мы сосредоточились на генетических компонентах риска развития заболеваний, но существует одна большая проблема, на которую не обращают внимания, – влияние токсинов окружающей среды на наши гены и эпигеном. Специалисты Центра по контролю и профилактике заболеваний нашли 148 различных химических веществ в крови и моче жителей США. Находится все больше подтверждений тому, что вредные для окружающей среды вещества могут вызывать заболевания, провоцируя эпигенетические изменения в нашем геноме, из-за чего изменяется активность определенных генов. Например, содержание в воде мышьяка оказывает сильное влияние на процесс метилирования и ведет к формированию опухолей мочевого пузыря. Воздействие высокой концентрации других тяжелых металлов (никель, ртуть, хром, свинец и кадмий) в воде и пищевых продуктах также может повлиять на процесс метилирования и вызвать изменения в генах, что ведет к различным видам рака, в том числе раку печени и легких. В конечном итоге по всему миру количество смертей от воздействия вредных для окружающей среды веществ, многие из которых связаны с эпигенетическими изменениями, оценивается в 13 миллионов.
Широкий спектр вредных эпигенетических изменений обусловлен воздействием пестицидов.
Мы не хотим сеять панику, но важно следовать за наукой. Пожалуй, никто не продвигал нашу информацию по этому вопросу так активно, как д-р Майкл Скиннер, специалист по биологии развития из Вашингтонского университета. В ходе одного из исследований Скиннер подвергал беременных крыс воздействию химического вещества, известного своей способностью влиять на развитие эмбриона, – фунгицида под названием винклозолин, который используют для обработки виноградников от плесени, а также для предотвращения гниения и других болезней фруктов и овощей. Было уже доказано, что винклозолин снижает фертильность самцов мышей. Скиннер обнаружил, что у потомства мышей, которые подверглись воздействию химикатов, вплоть до четвертого-пятого поколения отмечалась низкая численность сперматозоидов. Этот результат успешно повторился 15 раз.
Причиной уменьшения численности сперматозоидов, обусловленного воздействием винклозолина, были не мутации в ДНК, а эпигенетические изменения у взрослых мышей (через метки метилирования), которые потом перешли по наследству к следующему поколению. (Это отличается от того, что мы привыкли слышать, когда мутантные гены, которыми обусловлено то или иное заболевание, передаются от родителей к детям, как при серповидно-клеточной анемии.) Таким образом, появился еще один ключ к существованию «межпоколенной генетики».
Кроме того, Скиннер и его коллеги обнаружили, что существует определенный профиль, при котором метильные метки присоединялись к генам после того, как мышей подвергали воздействию различных токсичных химических веществ. Каждый токсин, был ли это инсектицид или реактивное топливо, оставлял собственный отчетливый след. В некоторых случаях изменения в активности генов могли передаваться по наследству и создавать у потомства предрасположенность к определенным заболеваниям. Например, инсектицид ДДТ, использование которого в США долгое время было запрещено из-за губительного влияния на пищевые цепочки животных и птиц, также действует и на эпигенетическом уровне. Воздействие ДДТ на мышей создало у последующих поколений животных предрасположенность к ожирению и всем болезням, которые им обусловлены, – сердечно-сосудистым заболеваниям и диабету.
Широкий спектр вредных эпигенетических изменений обусловлен воздействием пестицидов. Метоксихлор, который используют для обработки скота от блох, комаров и других насекомых, вызвал у мышей дисфункцию тестикул и яичников. Другой пестицид, диэльдрин, серьезно влияет на эпигенетические изменения (ацетилирование) гистонов, что привело к отмиранию у мышей нервных клеток, результат которого – болезнь Паркинсона. Эксперименты Скиннера на мышах также показали, что воздействие диоксина, канцерогенного химического соединения, которое содержится в промышленных отходах, способствует эпигенетическому наследованию заболеваний предстательной железы, заболеваний почек и поликистоза яичников.
Один из лучше всего изученных токсинов окружающей среды, который может стать причиной аномальных эпигенетических изменений, – бисфенол, или БФА. Он применяется в производстве пластмасс, из которых делают контейнеры для еды и напитков, в том числе и детские бутылочки. Известно, что БФА вызывает эпигенетические изменения. Мы приведем пример из компетентного исследования. Проведенное в Университете Тафтса исследование показало, что БФА может изменить активность генов в молочных железах крыс, которые подверглись воздействию химикатов в утробе матери, а позже у этих животных обнаружилась более высокая степень предрасположенности к раку молочных желез. До этого выяснилось, что БФА повышает риск рака предстательной железы. В ходе других исследований эпигенетические изменения, вызванные БФА, были связаны с пожелтением шерсти у определенной породы мышей, а также с повышением риска развития рака. (Обратите внимание: единственный способ уберечь детей от воздействия БФА – использовать стеклянные бутылочки и контейнеры или искать на них маркировку «не содержит БФА».)
И наконец, диэтилстилбестрол, который использовали в 1940–1960-х гг. для профилактики выкидышей у беременных женщин, повышает риск развития рака груди. Теперь мы знаем, что это связано с эпигенетическими изменениями. Стоит задать себе вопрос, передаются ли они следующим поколениям вместе с повышенным риском.
Загрязнение воздуха, особенно транспортными выхлопами, также ведет к эпигенетическим изменениям, которые могут вызывать воспаление по всему организму. Бензол, который содержится в бензине и других видах топлива на основе нефти, ведет к метилированию ДНК, из-за которого развивается лейкемия. Хлорирование водопроводной воды ведет к образованию побочных продуктов – тригалометанов, триэтилтина и хлороформа, все они могут вызвать эпигенетические изменения. В ходе исследований удалось получить доказательства вредного воздействия этих веществ на здоровье. Крысы, в питьевой воде которых содержался триэтилтин, страдали от частых воспалений мозга и отеков, возникавших из-за метилирования. Хлороформ и тригалометан, известный под названием бромдихлорметан, были причиной повышенного метилирования в клетках печени и генах, которыми обусловлены заболевания печени.
Даже у безопасных веществ, не связанных с подобными рисками, есть множество подводных камней.
Тревожный факт: многие пряности, завезенные из Индии, содержали тяжелые металлы. Причина кроется в близком расположении плантаций с пряностями к шахтам и металлургическим комбинатам, в результате такого соседства для орошения плантаций используется загрязненная вода. Только в 2013 г. Управление по контролю за продуктами питания и лекарственными средствами запретило импорт более 850 партий пряностей со всего мира. Чтобы свести к минимуму подобный риск, можно безопасно использовать органические пряности, выращенные в США, и с осторожностью покупать пряности из Индии и Китая. Покупать стоит продукты известных торговых марок в магазинах с хорошей репутацией. Особенно осторожно следует покупать пряности неизвестных поставщиков в небольших местных магазинах или заказывать через интернет. Во многих случаях в мелкие магазинчики этнической направленности завозят товары от поставщиков, которые обходят проверку Управления по контролю за пищевыми продуктами и лекарственными средствами. Притом что загрязненными считаются лишь 2 % импортных пряностей, вы сильно рискуете, приобретая их у неизвестных зарубежных продавцов.
Передадутся ли эпигенетические изменения от живущих сейчас взрослых следующим поколениям?
В совокупности почти нет сомнений в том, что многие токсины окружающей среды могут изменить эпигеном, создав предрасположенность к различным видам рака (рак груди, печени, яичников, легких) и другим заболеваниям, в том числе шизофрении, диабету и болезням сердца. Их воздействие на каждого человека индивидуально и разнообразно, что значительно усугубляет проблему. Некоторые эксперты говорят, что настанет время, когда мы будем приходить к врачам для полного сканирования эпигенетических изменений, чтобы определить будущий риск развития тех или иных заболеваний. Будем ли мы больше и чаще использовать влияющие на эпигеном лекарства, такие как ингибиторы диацетилазы гистонов (ингибиторы ГДА), и методы лечения, основанные на воздействии на РНК, чтобы снизить риски и вылечить заболевание?
Эти сценарии воплощаются в жизнь. В этой книге мы предложили альтернативу, к которой вы можете прибегнуть уже сегодня и которая поможет вам изменить свою жизнь, снизить риски, и, возможно, в будущем этот подход можно будет настроить на конкретные эпигенетические признаки заболевания. На основании результатов исследований, в том числе и тех, о которых мы писали здесь, возникает еще более важный вопрос, передадутся ли эпигенетические изменения от живущих сейчас взрослых следующим поколениям. Д-р Майкл Скиннер в этом почти не сомневается: «По сути, то, что пережила ваша прапрабабушка, может вызвать болезни и у вас, и у ваших внуков».
Соблюдая этот принцип, крайне важно быть в курсе того, что эпигенетические изменения возникают из-за токсинов и веществ, которые загрязняют окружающую среду. Это единственный путь, который мы должны продолжать ради нашего собственного здоровья и здоровья поколений, которые еще не родились.