Книга: Сейчас. Физика времени
Назад: Глава 8 Стрела преткновения Эддингтон утверждает, что движение времени вперед объясняется увеличивающейся энтропией
Дальше: Глава 10 Эта таинственная энтропия Более глубокое значение энтропии – одно из замечательнейших достижений в истории физики…

Глава 9
Раскрываем секрет энтропии
Энтропия звучит таинственно, но это все-таки и инструмент, который обладает обычными единицами измерения: калория на градус…

Я дух, всегда привыкший отрицать.
И с основаньем: ничего не надо.
Нет в мире вещи, стоящей пощады,
Творенье не годится никуда.

Гете, «Фауст», Мефистофель
Физика привыкла давать непонятные и абстрактные определения повседневным явлениям. Если только вы не закончили университет со степенью бакалавра по этой науке, вы можете быть незнакомы, например, с определением энергии, разработанным Эмми Нётер (см. ), которое изучают в самых продвинутых курсах по физике:
Энергия – это сохраняющаяся физическая величина, сохраняемость которой обусловлена отсутствием явной временной зависимости в лагранжиане.
Не стоит и говорить, что это непохоже на то, чему нас учат в старшей школе или даже на последних курсах университета. Однако это определение оказывается очень полезным, когда возникают новые обстоятельства. Например, если вы – Эйнштейн и только что создали новые уравнения, которые назвали теорией относительности. И хотите пересмотреть сохранение энергии с помощью этих новых уравнений. Тогда вам нужно применить теорему Нётер. (Более подробно об этом понимании энергии см. .)
Другие физические понятия имеют столь же абстрактные и таинственные определения, которые могут оказаться полезными для ученых, но весьма туманными для нефизиков. Одно из них – как раз продвинутое определение энтропии. В самом абстрактном виде оно может быть сформулировано следующим образом:
Энтропия – это логарифм количества квантовых состояний, которого может достичь система.
Это пояснение настолько же легко для понимания, как и определение энергии, данное Нётер. Энтропия начинает казаться чем-то загадочным, совершенно недоступным для большинства людей, за исключением наиболее продвинутых в математическом отношении физиков-статистиков.
Если у вас сложилось такое представление, вы очень удивитесь, узнав, что энтропия чашки кофе составляет около 700 калорий на 1 °С. Энтропия вашего тела – примерно 100 000 калорий на градус. С небольшими познаниями в физике и химии, а также при наличии химического справочника вы вычислите энтропию большинства окружающих объектов. Если вас это заинтересовало, откройте страничку «Энтропия воды» в интернете.
Калории на градус? Те самые единицы измерения количества теплоты, которые изучают на уроках физики в старшей школе? Той теплоты, которую нужно перенести на объект, чтобы повысить его температуру. Это очень далеко от «логарифма количества квантовых состояний», правда? Ничего в этом нет также от «степени хаоса» или «неупорядоченности». Энтропия может быть окружена каким-то налетом загадочности, но это не миф. Она присутствует в нашей жизни и очень важна в технике.

Движущая сила огня

Так же как сегодня компьютерные технологии продвигают информационную революцию, паровые машины некогда двигали вперед революцию промышленную. В начале 1700-х годов паровые машины были огромными, занимающими целые здания, и неэффективными. И все-таки они были достаточно экономически результативными, чтобы, например, выкачивать воду из глубоких шахт. Быстрая модернизация техники началась с развитием конкуренции. В 1765 году Джеймс Уатт, чьим именем названа одна из разновидностей паровой машины, изобрел более экономичный и малый по размерам двигатель. В 1809 году Роберт Фултон создал целый небольшой флот паровых судов, которые сновали по шести рекам Америки и Чесапикскому заливу. В конце концов механизм удалось сделать достаточно компактным, чтобы сконструировать паровоз. Была создана протяженная транспортная система и открыт американский Запад. Но революция не остановилась. Современные угольные и газовые ТЭЦ можно назвать сильно продвинутыми вариантами паровой машины, точно так же, как и атомные электростанции, топливом для которых вместо угля служит уран, но теплоносителем по-прежнему оказывается пар.
Большинство решений, найденных на ранних этапах развития паровых машин, были эмпирическими. Джеймс Уатт, шотландский механик-изобретатель, обратил внимание на чрезвычайную неэффективность попеременного нагревания и охлаждения парового цилиндра и придумал отдельный конденсатор отработанного пара, который значительно повысил КПД устройства.
Но поистине революционного прогресса в понимании процессов работы тепла, не прибегая к утомительной череде проб и ошибок, добился молодой французский военный инженер Сади Карно. Он работал над физическими принципами паровых машин в начале XIX века и пришел к выдающимся результатам.
Карно понял, что работа тепловой машины необязательно должна основываться на паре. Паровая машина была только одним видом двигателя, который мог преобразовывать горячий газ в полезную механическую энергию. Аналитические разработки Карно сегодня повсеместно используются в бензиновых и дизельных двигателях. В идеале было бы желательно, чтобы вся энергия тепла переводилась в механическую энергию. Но инженер пришел к заключению, что это невозможно. Та часть тепла, которая может преобразовываться в другой вид энергии, называется коэффициентом полезного действия. Карно показал, что поддержание одной части двигателя в разогретом состоянии так же важно, как и охлаждение другой его части. Именно соотношение тепла и холода и определяет КПД. Отклонение реального КПД машины от идеального определяется соотношением Тхолода/Ттепла, в котором температуры измеряются по абсолютной шкале. Если Тхолода достаточна низка или Ттепла достаточно высока, можно приблизиться к 100 %-ной эффективности.
Современная АЭС использует уран, чтобы производить пар, и охлаждающую воду, чтобы этот пар конденсировать и вновь превращать в жидкость. Символом АЭС стали не реакторы, в которых расщепляются ядра уранового топлива, а гигантские сооружения, похожие на широкие заводские трубы. Ядерная реакция происходит в небольшом здании с куполом. По сравнению с величественными испарителями оно не производит никакого впечатления. И вот работа мощных энергетических станций основывается на уравнениях, выведенных когда-то Карно, в которых показывалось использование тепла и холода для достижения максимальной эффективности. По сути современнейшие атомные электростанции остаются теми же самыми паровыми машинами, каким бы странным это ни казалось. Точно так же и атомные субмарины движутся за счет пара.
При наличии горячего потока теплоносителя (пара) и охлаждающей камеры любая паровая машина должна конструироваться с максимальной тщательностью, чтобы избежать потерь тепловой энергии. Карно придумал, как это сделать, и сегодня мы называем его оптимальное виртуальное устройство циклом Карно. Мы определяем КПД других двигателей в процентах от КПД Карно. (Иногда вы можете услышать, что какой-то тепловой двигатель имеет КПД 90 %. Это значит, что он достигает 90 % от цикла Карно.) Гипотетический двигатель Карно достигает высших показателей за счет сведения к нулю производимой энтропии. Ниже я дам определение энтропии, однако важнейшим моментом в понимании существа паровых машин будет то, что вы, создавая энтропию, тем самым расходуете энергию впустую. Карно не вводил в научный оборот термин «энтропия». Он был придуман его учеником Рудольфом Клаузиусом, который взял начало «эн-» и окончание «-ия» из слова «энергия», а корень «-троп-» – от греческого «тропос», что значит «трансформация». В 1865 году Клаузиус писал:
Предлагаю назвать величину S энтропией системы, от греческого «тропос» («трансформация»). Я намеренно сделал так, чтобы слово «энтропия» максимально походило на слово «энергия». Эти два понятия так тесно связаны по их значению в физике, что некоторая похожесть в определяющих их словах кажется мне весьма уместной.
Так что, если вы перепутали энтропию с энергией, это вина Клаузиуса.

Энтропия теплового потока

В изначальной формулировке энтропия объекта определялась как нулевая в том случае, если все тепло из объекта удалено. Чтобы определить энтропию теплого объекта, необходимо начать от нулевой температуры (по абсолютной шкале, то есть по шкале Кельвина) и постепенно сообщать ему тепло, следя за поднимающейся температурой объекта. Небольшое увеличение энтропии определяется как добавленная теплота, поделенная на температуру. Если сложить все небольшие увеличения энтропии, можно получить энтропию теплого объекта. Так, например, мы измеряем энтропию чашки воды. Если температуру постепенно снижать, уменьшится и энтропия.
Обычно холодные объекты обладают низкой энтропией, а горячие – высокой. В этом смысле энтропия подобна энергии, но она безгранична и легко создается. Общее количество энергии отдельной группы предметов не меняется со временем, хотя энергия может переноситься от объекта к объекту или превращаться из потенциальной в кинетическую или из массы в тепло. Это закон сохранения энергии. В отличие от этого энтропия не сохраняется. Она может увеличиваться беспредельно. В этом смысле она подобна словам: вы можете спродуцировать столько слов, сколько вам угодно. Слова не сохраняются. (Отец Ричарда Фейнмана любил подтрунивать над сыном по этому поводу: он просил малыша помолчать, предупреждая, что иначе у него кончатся слова и он не сможет говорить.) С энтропией то же самое. Вселенная постоянно создает новую энтропию.
Энтропия может увеличиваться со временем, даже если вы ничего не делаете. Создавать ее легко. Оставьте чашку горячего кофе в холодной комнате. По мере ухода из кофе тепла энтропия напитка уменьшается (отрицательный поток тепла), но энтропия комнаты увеличивается – настолько, чтобы компенсировать ее потерю в чашке.
Ни один реальный двигатель не может достичь коэффициента полезного действия Карно, так что экономия энергии подразумевает движение вперед с использованием минимально возможного количества полезной энергии, необходимой для выполнения некоей работы. В конечном счете даже полезная энергия забирает тепло, и это, наряду с другими факторами, увеличивает энтропию Вселенной.

Энтропия смешения

Формирование тепловых потоков не единственный путь создания энтропии. Например, можно взять углекислый газ, образующийся в ходе работы угольной тепловой электростанции, и дать ему возможность смешаться с атмосферой. Возникающую в результате энтропию смешения легко высчитать с использованием правил и формул, разработанных Карно, Клаузиусом и их последователями. Эти формулы изучаются начальными курсами физики в университете. Добавляя шоколадный сироп в молоко, вы смешиваете две жидкости и без дополнительной энергии уже не можете их разделить. Энтропия смешения станет более понятной, когда в следующей главе мы обсудим вопрос о ее связи с ее же ошибочным пониманием.
Вот практический пример. Предположим, вы хотите опреснить морскую воду. Она представляет собой смесь воды и соли: в ней присутствует энтропия смешения. Опресняя, вы лишаете ее энтропии смешения. Второй закон (или начало) термодинамики гласит, что вы можете сделать это, только увеличив энтропию где-то еще. Например, используя тепловой поток для толкания поршня; тот оказывает на морскую воду давление, проталкивая ее через специальную мембрану, а она, в свою очередь, делит эту воду на два компонента. Расчеты позволяют определить минимальное количество энергии, которая должна быть затрачена на процесс опреснения: примерно 1 кВт/ч на 1 м³ морской воды.
Эта величина имеет практическую ценность. Однажды мне пришлось оценивать коммерческое предложение по новому методу опреснения морской воды. Первым делом я проверил, не противоречат ли излишне смелые заявления разработчиков второму закону (началу) термодинамики. Оказалось, что противоречат, поэтому я порекомендовал инвестору воздержаться от капиталовложений в проект. Изобретатель нового метода нарушил второй закон.
Расчеты энтропии могут сказать не только о том, какие заявления изобретателей окажутся фальшивкой. Они способны помочь определить достижимые цели. Если мы говорим, что стоимость электроэнергии составляет 10 центов за 1 кВт/ч, значит расходы на опреснение 1 м³ морской воды тоже составят 10 центов. Это соответствует затратам $100 на объем 1 акр-фут (примерно столько воды расходует за год семья из пяти человек). В настоящее время вода с опреснительных заводов даже близко не так дешева. Компании предлагают пресную воду по $2000 за такой объем. Обычная цена артезианской воды в Калифорнии составляет от $6 до $40 за 1 акр-фут, что делает ее опреснение невыгодным. Однако во время засухи 2015 года некоторые фермеры покупали ее и по $2000. Подобная цена делала опреснение воды конкурентоспособным. (Разумеется, инвестиции в опреснительные установки по-прежнему рискованные, поскольку цена воды после окончания засухи падает.)
Один из путей снижения затрат на опреснение морской воды – использование энергии, которая обходится дешевле электрической. Например, для создания необходимого тепла могут использоваться солнечные батареи. Такие установки уже существуют на Ближнем Востоке. Парадоксально, но тот же солнечный свет может использоваться и для охлаждения. Угадайте, кто имеет соответствующий патент? Вот поразительный ответ: официальный патент США за № 1781541 на холодильник, работающий на солнечной энергии, принадлежит Альберту Эйнштейну и физику Лео Сциларду (который запатентовал атомную бомбу). Вы можете прочесть об этом в интернете. Это малоизвестный и удивительный факт, с помощью которого удастся выиграть пари.
Расчеты изменений энтропии важны для устранения углекислого газа из атмосферы, чтобы справиться с глобальным потеплением. Если выбрасывать углекислый газ в воздух, четверть его даже через 1000 лет останется там. В принципе, его можно было удалить, но он растворяется в гигантском объеме атмосферы; значит, и энтропия смешения тоже гигантская. Чтобы убрать углекислый газ из атмосферы, необходимо создать энтропию еще где-то (обычно она создается в форме тепла), однако на это нужны огромные расходы энергии. Значительно дешевле оказывается улавливать углекислый газ до того, как он смешивается с атмосферой. Или просто оставлять углерод в его природном виде в земле.
Однако на этом остановимся с описанием практической пользы от расчетов энтропии. С поведением времени энтропию связывает как раз абстрактное и мистическое ее понимание.
Назад: Глава 8 Стрела преткновения Эддингтон утверждает, что движение времени вперед объясняется увеличивающейся энтропией
Дальше: Глава 10 Эта таинственная энтропия Более глубокое значение энтропии – одно из замечательнейших достижений в истории физики…

Игорь Леонидович Новожилов
Господь Бог Всемогущий молитвами Святого Вонифатия и Приснодевы Марии, Афонской Отроковицы Божественной и Святого Панелиимона, избавь от психических болезней население планеты сей, старанием Всех Архистратигов Божиих ходатайством Всех Ангелов Божиих, работой трудной Всех Безсеребрянников Божиих. Аминь.
Евгений
Перезвоните мне пожалуйста 8 (962) 685-78-93,для связи со мной нажмите цифру 2, Евгений.
Антон
Перезвоните мне пожалуйста 8 (962) 685-78-93 Антон.