Причины и последствия взрыва: попытка авторской реконструкции
Сначала – о еще одной гипотезе. На этот раз – заокеанской.
В качестве гипотезы о причинах аварии в Кыштыме группа американских экспертов из Окриджской лаборатории назвала взрыв нитратно-ацетатных солей. И вот на каком основании. Нитраты и нитриты всегда присутствуют в отходах радиохимических процессов при производстве плутония, так как выгоревшие урановые стержни обычно сначала растворяются в азотной кислоте. Однако ацетаты и вообще органические вещества в ядерных отходах в США не присутствовали, так как в 1940-х и 1950-х годах американцами использовался висмут-фосфатный метод осаждения плутония. Но в США переводились на английский язык и распространялись по заинтересованным лабораториям все советские работы, связанные с производством плутония. Главные исследования были, конечно, засекречены, но некоторые косвенные исследования позволяли сделать выводы и об их сути. Таким образом в США обнаружили, что в СССР разработана методика осаждении урана ацетатами натрия. При обработке уранового топлива выделяется не только плутоний, но и уран для повторного использования. Наличие в отходах органического материала (ацетатов) создает возможность взрывоопасной реакции между ацетатами и нитратами при перегреве сухого или высыхающего осадка. Но этот процесс характеризуется очень быстрым горением (окислением), а не мгновенным взрывом. Вывод о присутствии в отходах (в СССР) ацетатов был сделан на основании статьи Д. И. Семенова о метаболизме радиоизотопов в животном организме, опубликованной в Трудах Института биологии Уральского филиала АН СССР (сейчас – Уральский научный центр АН СССР. – Ред.) (1966. № 46. С. 15–32), в которой был приведен химический состав отходов от производства плутония. Однако американские авторы считали более вероятным взрыв аммоний-нитратов, так как они тоже присутствовали в отходах благодаря выделению цезия-137 с помощью аммониевых квасцов. Причем в СССР реакторные отходы использовались не только для производства плутония, но и для выделения огромных количеств радиоцезия. В США цезий также выделялся из отходов, но в очень небольшом количестве. При этом также использовался аммоний. В 1950 г. в одной из лабораторий на опытном заводе по обработке отходов реактора для выделения радиоцезия в результате накопления очень высоких концентраций аммоний-нитрата в горячем испарителе произошел взрыв. Отчет об этом взрыве имелся в Окридже. И американские специалисты предположили поэтому, что этот взрыв может быть моделью и того, что произошел в Кыштыме.
Но и эта гипотеза тоже кажется мне маловероятной. Усыхание жидких отходов такого типа действительно может дать до 80 т сухого осадка. Но при этом его взрыв будет эквивалентен примерно лишь 30 т тринитротолуола, так как аммонал имеет только 40 % его взрывной силы. Однако главное даже не в силе взрыва, а в малой вероятности усыхания раствора до состояния, когда может произойти детонация от искры или по другой причине.
И все же запомним: на атомном заводе близ Кыштыма накапливались нитратные и ацетатные соли. Это было связано с тем, что при радиохимических процессах выделения урана, плутония и цезия использовался ацетатный метод, то есть применялась уксусная кислота. Точную химию всех процессов мы не знаем, но совершенно очевидно, что расщепление органических соединений под действием радиации идет намного быстрее, чем расщепление воды, и поэтому образование метана и метила, очевидно, происходило довольно интенсивно.
Судя по описанию тех мер, которые внедрялись при постройке нового хранилища отходов после взрыва в сентябре 1957 г. (разбавление радиолитических газов, водорода и метана, воздухом «до взрывобезопасной концентрации»), прежняя система вентиляции была недостаточной и позволяла накопление и водорода, и метана. При той высокой концентрации радионуклидов, которая применялась в СССР (раз в 6–7 выше, чем в США!), образование радиолитических газов было серьезной опасностью. Эти самые элементарные детали дают возможность гипотетического воспроизведения развития аварии.
Внутренние трубки охлаждения (если они вообще существовали) дали течь и были отключены. Это привело к разогреву концентрированного раствора радионуклидов в течение примерно 30–35 часов до температуры выше 100 °C. Советские отчеты об аварии дают таблицы изотопного состава в выбросе. Главным изотопом был церий-144, составлявший 66 %. Вторым количественно был цирконий-95, составлявший 25 %. Период полураспада церия-144 составляет 284 дня, а циркония-95 – 65 дней. В свежей отработанной реакторной коре содержание циркония несколько выше, чем церия (соотношение 5:3). Оно становится равным тому, которое указано в советских таблицах, примерно через 160 дней. Следовательно, радионуклиды, которые находились в аварийном контейнере, покинули реактор только за 160 дней до взрыва. Заявления о том, что банка «вечного хранения» существовала без охлаждения больше года, мягко говоря, неточны. Это абсолютно невозможно! Однако после изъятия блоков из реактора их не отправляют сразу на обработку, а выдерживают под водой более 100 дней для распада короткоживущих радионуклидов. Среди них наиболее опасным для жизни является йод-131 с периодом полураспада 8 дней. Я не исключаю, что в конце 40-х годов, когда руководителем всего атомного проекта был, по решению Политбюро, Берия, долго не ждали. Тогда строительство этих объектов осуществлялось руками узников ГУЛАГа и вопрос о радиационной опасности решался просто: жизнь заключенных не принималась в расчет. Но в 1956 г. пускать урановые блоки в радиохимическую обработку до того, как летучий йод-131 исчезнет, было уже невозможно. Обычно блоки просто держат под водой в огромных ваннах, в которых вода медленно циркулирует. Если минимальный срок выдержки должен быть около 100 дней и еще 10–20 дней следует отвести на непосредственно радиохимическую переработку, то практически раствор был залит в контейнер не ранее чем за 50 дней до взрыва. В советских отчетах 1989 г. указывается, что в выброшенной массе были лишь «следы» стронция-89. В отличие от стронция-90, с полураспадом в 28,6 года, у стронция-89 период полураспада только 53 дня. Присутствие этого изотопа также говорит о «молодом» возрасте отходов.
Значит, если смесь была в контейнере только 50–80 дней, то ее «высыхания», даже при кипении, не могло произойти. Нужны годы для того, чтобы раствор действительно упарился до солеобразного состояния (так называемый солевой пирог). Описания Микерина, приведенные в газете Washington Post («нитратные и ацетатные соли собирались на поверхности»), – очевидно, ошибка журналиста. Из элементарной химии известно, что при сгущении раствора соли выпадают в осадок. У Губарева в очерке речь идет уже об осадке, который уплотнялся с повышением температуры. Но до сухого «пороха», о котором пишет Губарев, дело могло дойти за значительно более длительный срок, причем только при отсутствии каньона, наполненного охлаждающей водой.
Мне наиболее вероятной кажется следующая цепочка событий. Стальная емкость заполнялась в течение определенного, сравнительно короткого, срока, нам неизвестного. Но в ней были отходы, поступившие, скорее всего, за период от 50 до 100 дней работы радиохимического комбината (до взрыва). Каньон был заполнен водой. При периодической смене воды (частота нам неизвестна) обнаружилась утечка радионуклидов из емкости в каньон. Это исключало обычный цикл смены воды. Видимо, утечке предшествовало отключение внутренней системы охлаждения и именно разогрев жидкости вызвал утечку. После остановки активного охлаждении раствор в емкости стал нагреваться. Однако закипание, которое началось, очевидно, через 25–40 часов, происходило сначала в каньоне, а не в емкости. Концентрированные растворы имеют более высокую температуру кипения. Но закипание сильно загрязненной воды в каньоне привело к формированию аэрозоля с радиоактивностью. Радиоактивный фон во внутреннем помещении хранилища (с 60 емкостями, большей частью от старых захоронений) повысился – не заметить это было невозможно. Возникла аварийная ситуация, и не исключено, что о ней не стали докладывать И. Курчатову или в министерство, а решили принять местные меры. Средств перекачки жидких отходов в резервную емкость, очевидно, не было. (Такое решение – перекачка – было бы обычным в США или Великобритании.) Вот и решили просто перекрыть все выходы из тяжелой, весом 160 т, крышки каньона с емкостью. По-видимому, рассчитали, что давление пара при слабом кипении будет недостаточным для парового подъема крышки. Понадеялись и на то, что выделение тепла в растворе довольно быстро сокращается за счет распада короткоживущих изотопов (между 200 и 350 днями хранения общая активность радионуклидов снижается более чем в два раза). При этом опасность накопления радиолитических газов, видимо, проглядели – принимать решения мог человек (физик, а не химик), имеющий слабое представление о химических реакциях. Однако из-за недостаточной вентиляции в закупоренной емкости накопление водорода, метана и кислорода под 160-тонной крышкой могло достигнуть взрывоопасной концентрации в течение 3–4 недель. В этом случае той искры в контрольном устройстве, о которой говорил американцам Микерин, было вполне достаточно для взрыва. Но уже первичный взрыв мог дать и детонацию выброшенного из-под раствора более плотного осадка нитратов и аммония, и ацетатов, а также возгорание того, что могло гореть.
Во время семинара Ядерного общества СССР 15–16 марта 1990 г. один из докладчиков, Н. И. Буров, рассказавший о влиянии выпадения радионуклидов на животных ближайшего колхоза, прежде всего сказал, что сам был свидетелем взрыва, происшедшего в 12 км от деревни Бердяниш, в которой он жил и работал ветеринаром. По его словам, взрыв был мощный, все окна и двери в деревне пооткрывались взрывной волной и над атомным заводом стало подниматься черное облако. Однако облако могло подниматься только в том случае, если что-то горело. Упоминание в сопроводительном тексте видеофильма о том, что в новом хранилище все коммуникации были исполнены в «пожаробезопасном» варианте, является косвенным подтверждением того, что в результате взрыва возник и пожар.
В Ханфордской резервации в США опасность взрыва некоторых контейнеров с отходами возникла более чем через 20 лет после их загрузки. И она была связана не с нитратно-ацетатными, а с нитратно-ферроцианидными солями. Ферроцианид применялся на радиохимическом заводе с 1954 г. для отделения радиоактивного цезия в течение несколько лет. За этот период более 100 т цианида попало в контейнеры отходов, причем в некоторых контейнерах могло оказаться от 10 до 30 т ферроцианида. Ферроцианид в присутствии нитратов и нитритов может спонтанно давать быструю экзотермическую реакцию (то есть взрыв), если температура повысилась бы до 300 °C. Но реакция могла начаться и при температурах выше 200 °C. Было рассчитано, что в случае взрыва в большом контейнере он мог быть эквивалентным 36 т тринитротолуола. За контейнерами установили тщательное наблюдение, и в период с 1975 по 1989 г. температура снижалась с 93 °C (в США использовалась шкала Фаренгейта, и это соответствовало 200°F) до 50–60 °C. По поводу этой проблемы американскому департаменту энергетики тоже был представлен подробный отчет. И в случае кыштымской аварии ее техническую сторону необходимо было представить, и в столь же подробной форме, специалистам в области атомной энергии из других стран.
Количество радионуклидов в контейнере, взорвавшемся 29 сентября 1957 г. (20 млн кюри), можно, конечно, принимать только как сугубо приблизительное. Если принять, что в контейнер объемом 250 кубометров было загружено 200 кубометров жидких отходов, то это соответствует 100 кюри на литр. Свежее ядерное топливо, выгруженное из реактора, снижает радиоактивность за счет распада короткоживущих радионуклидов довольно быстро, и через 200 дней в смеси остается только 5 % исходного количества (процесс идет с замедлением, и за следующие 200 дней радиоактивность уменьшается только наполовину). Если допустить, что раствор уже находился в контейнере до взрыва от 50 до 80 дней, то при загрузке концентрация радионуклидов в растворе была не больше 400 кюри на литр. Но этой концентрации вполне достаточно, чтобы температура превысила уровень кипения воды. С точки зрения производства плутония, это количество, однако, не слишком велико, оно приблизительно равно одному реакторному циклу (5–6 месяцев) одного из пяти реакторов, производивших на комбинате плутоний. Поэтому наверняка рядом было много других, уже заполненных ранее или позднее контейнеров. Сколько из 60 контейнеров было уже загружено в хранилище, пока неизвестно. А ведь это, без сомнения, очень важный вопрос.
Вероятность первичного взрыва именно радиолитических газов водорода и метана позволяет задать вопрос: не мог ли такой взрыв и быть основным в кыштымской аварии? Однако эксперты из Селлафилда, с которыми я обсуждал эту ситуацию, подсчитали, что даже при самой неблагоприятной концентрации водорода в контейнере взрыв газов будет эквивалентен только 10–20 кг тринитротолуола – этого не хватит, чтобы сбросить крышку весом 160 т. Водород – легкий газ, а для мощности взрыва важна, прежде всего, масса взрывчатого вещества. Даже если бы водород накапливался в пространстве над контейнерами, то и 10 000 кубометров дадут взрыв, соответствующий только 1 т тринитротолуола. Поэтому водородный или водородно-метановый взрыв газов не мог подбросить крышку весом 160 т, как перышко, отшвырнуть «Победу» Булдакова (см. ниже цитату из очерка Губарева) и раскрыть все окна и двери в деревне, расположенной в десятке километров от комбината. От кыштымского взрыва детонировала какая-то огромная масса вещества, порядка 200 т. Но в случае жидкости детонация аммоний-нитрата является более вероятной. Не исключены и другие варианты. К тому же при взрывоопасной концентрации аммоний-нитратных (и, очевидно, с нитратами и ацетатами) смесей содержание в контейнере радионуклидов окажется выше 400 кюри на литр. Все это показывает, что подробный отчет об аварии (ее техническая и химическая стороны) чрезвычайно необходим. Имеющиеся объяснения пока неудовлетворительны во всех отношениях.
Что случилось с другими контейнерами в хранилище отходов?
По данным ЦРУ, которые я получил с помощью Акта о свободе информации, контейнеры с отходами в районе Кыштыма находились под землей, а их верхняя часть выходила на поверхность. Расстояние между контейнерами было не больше 20 футов (то есть около 7 метров). При взрыве одного контейнера стальными осколками были повреждены и другие. В Москве, во время семинара, и во время поездки на опытную станцию при Кыштымском заповеднике я продолжал спрашивать, что произошло с другими контейнерами, каков был размер воронки от взрыва и как проводилось наблюдение за остальными контейнерами после катастрофы, когда территория вокруг была очень сильно загрязнена. По данным официального отчета (под редакцией А. И. Бурназяна), рассекреченного и опубликованного перед семинаром, мощность дозы гамма-излучения на расстоянии 100 м от хранилища составляла 0,1 Р/с, то есть около 360 рентген/час. Полоса следа длиной 1–2 км и шириной около 1 км имела радиоактивность порядка 140 000 кюри/км2. Некоторые работы по генетике почвенных водорослей, которые я изучал, проводились в 1967–1971 гг. на участках с радиоактивностью только по стронцию-90 на уровне 1 кюри/м2. На слушании в Верховном Совете доктор биологических наук В. А. Шевченко в ответ на мой вопрос о локализации этих участков почвы ответил, что они были вблизи места аварии. Значит, осенью 1957 г. на одном квадратном метре было не менее 10 кюри радиоактивности с преимущественным гамма-облучением.
Во время дискуссии 20 марта 1990 г. с несколькими сотрудниками опытной станции в Кыштымском заповеднике мне сказали, что в результате взрыва были повреждены два соседних контейнера. Характер этих повреждений и возникшие при этом проблемы не обсуждались.
В США за 25 лет производства плутония (с 1948 до 1973 г.) в Ханфордской резервации было наработано около 300 000 кубометров высокоактивных жидких отходов, хранившихся в 151 контейнере. В СССР в 1950-х годах плутония производилось почти в три раза меньше, чем в США. С 1950-го до 1957 г. было произведено, очевидно, не более 10 000 кубометров более концентрированных жидких отходов. На радиохимическом заводе в Селлафилде в Великобритании за 30 лет было произведено около 3 000 кубометров высокоактивных отходов, но при этом концентрация радионуклидов в жидкости, заливаемой в контейнеры, была максимальной. Но 10 000 кубометров означали, что в кыштымском хранилище было заполнено уже не менее 40 емкостей из 60 построенных.
Существует наука о взрывах. Есть таблицы самых мощных индустриальных взрывов и их последствий. Самый мощный индустриальный взрыв в истории произошел в Германии в 1921 г. в Оппау. Там взорвался открытый склад, на котором хранились запасы аммоний-нитрата, использовавшегося в качестве удобрения. Взорвалась масса примерно в 4 000 т. Погибло 1 100 человек, ранено 1 500, и повреждения построек произошли на расстоянии до 7 км от места взрыва. Взрывы мощностью 100 т тринитротолуола обычно входят в таблицы самых мощных известных случайных индустриальных взрывов. При таком взрыве, судя по другим взрывам такой же мощности, может образоваться воронка до 100 м в диаметре и до 10 м в глубину. Серьезные повреждения построек наблюдаются на расстоянии до 300 м от эпицентра, некоторые повреждения – на расстоянии до 1 км. Осколки и обломки поврежденных и разрушенных взрывом объектов разбрасываются на расстояние от 2 до 4 км. Стекла разбиваются в зданиях в радиусе от 8 до 10 км от эпицентра. Только два из двадцати реальных индустриальных взрывов такой мощности обошлись без человеческих жертв.
Поскольку хранилище, судя по свидетельствам очевидцев, располагалось примерно в 1,5 км от индустриальной части Челябинска-40, то все окна в зданиях завода были, несомненно, выбиты. Какие-то участки индустриальной зоны были, безусловно, загрязнены. В очерке Губарева «Ядерный след», который я уже цитировал, взрыв хранилища также описывается со слов очевидца Л. А. Булдакова:
«Булдаков чуть опаздывал, а потому прибавил газ… И в этот момент “Победу” отбросило в сторону. Булдаков резко затормозил, сразу не поняв, что произошло. Он посмотрел в сторону комбината: там над корпусами начал подниматься столб дыма. Он рос быстро, вот уже достиг облаков… Взрыв? Но почему?
Столб дыма образовался над площадкой, где находились емкости с радиоактивными отходами».
В этом же очерке приведены свидетельства Б. В. Никипелова:
«Уже более двух лет я работал на этом предприятии, – вспоминает Борис Васильевич, – секретность была высочайшая: я даже не знал, что на нашей территории есть хранилище… Об аварии никто не говорил. Но мы понимали, что ситуация очень серьезная, потому что пришлось сменить всю одежду… Даже деньги в городе были “грязные”. Кстати, чем меньше купюра, тем она “грязнее” – быстрее “ходила по рукам”…
С сентября 57-го в этом городе, прежде чем войти в свою квартиру, хозяева снимали обувь. Сначала это было необходимостью – зачем заносить “грязь” в квартиру? – теперь стало привычкой».
Судя по этому описанию, радиоактивное загрязнение захватило не только индустриальную зону, расположенную на юго-восточном берегу озера Кызылташ, но и сам город атомщиков на северо-западном берегу этого же озера. Описания Булдакова и Никипелова подтверждают, что возник и пожар, ибо только в этом случае над корпусами мог «подниматься столб дыма». Это также подтверждает, что взрыв действительно произошел очень близко от реакторов и комбината «Маяк», так как со стороны казалось, что столб дыма поднимается именно над корпусами. «Победа» – довольно тяжелая машина, и если ее «отбросило в сторону», значит, взрыв был достаточно мощный. Все это говорит о том, что реальная авария была намного серьезней, чем взрыв только одной «банки вечного хранения».
Описание этого взрыва со всеми его техническими деталями и последствиями и для хранилища отходов с имевшимися там 60 емкостями, и для всей расположенной рядом индустриальной зоны, и для людей, которые должны были там работать в течение определенного времени, даже если реакторы были временно остановлены, и для «ликвидаторов», которым пришлось проводить дезактивацию, и для жителей городка атомщиков должно быть рассекречено и опубликовано. Отчет А. И. Бурназяна – единственный пока рассекреченный документ – касается только судьбы сельского населения, проживавшего в зоне радиоактивного следа: ближайшая к взрыву деревня была расположена на расстоянии 12,5 км от места катастрофы. Но пока нет никаких данных о том, как произошедшее сказалось на здоровье тех, кто работал в «закрытой» зоне, и тех, кому пришлось ликвидировать последствия загрязнения от 18 млн кюри, выброшенных взрывом, перезахоранивать отходы из поврежденных емкостей и вообще решать судьбу всего хранилища. Я полагал, что все эти проблемы будут обсуждаться на открытом семинаре Ядерного общества СССР.
Проведение семинара, посвященного ядерной аварии на Южном Урале в 1957 г., было, безусловно, победой гласности. Сейчас уже очевидно, что секретность нанесла очень большой практический и моральный вред перспективам развития атомной энергии в СССР и подорвала авторитет самой ядерной физики. Поэтому создание Ядерного общества СССР ставило своей целью восстановить этот авторитет и наладить обмен информацией внутри отрасли и между учеными СССР и других стран в области атомной энергии, радиационной медицины и экологии. На семинаре был представлен 21 доклад по экологическим, сельскохозяйственным и медицинским аспектам аварии на Южном Урале. Однако большая часть данных касалась исследований, проведенных в районе радиоактивного следа в 1950, 1960 и 1970-х годах. Технические проблемы (механизм взрыва, детальный анализ развития аварии, проблема хранения отходов, дезактивация наиболее загрязненных участков) не обсуждались, и физики-ядерщики участия в семинаре не принимали. Не приехали на семинар и сотрудники радиохимического предприятия «Маяк». Почти все участники, кроме Г. Н. Романова и Л. А. Булдакова, были бывшими сотрудниками Опытной научно-исследовательской станции (ОНИС), созданной профессором Клечковским в 1958 г. для изучения сельскохозяйственных и экологических аспектов аварии. Поскольку труды семинара должны были быть опубликованы, то я не буду делать обзор докладов, а отмечу те проблемы, которые выявились в ходе дискуссий и которые предстоит решать в будущем. Прежде всего – это проблема здоровья населения.