Что такое оптимальное решение
Если вы недавно посещали Нидерланды, то последний раздел вас мог удивить. Железнодорожное движение далеко от совершенства. Мелкие (и крупные) задержки случаются сплошь и рядом. Пересадки порой очень короткие, их легко пропустить при малейшем опоздании. Поезда часто переполнены, особенно вагоны наиболее популярного 2-го класса. Далеко не все обрадовались новому расписанию. Влиятельная голландская газета NRC Handelsblad писала:
Это единственная форма высшей математики, которая вызвала в обществе такую бурю эмоций.
Александр Схрейвер, знаменитый голландский математик, один из лучших в мире специалистов по оптимизации, играл ведущую роль в составлении нового расписания. Критика журналистов его не очень взволновала. В одной из статей, рассчитанной на широкую публику, он пишет:
Что определяет оптимальность? Комфорт пассажиров? Общий доход? Расписание персонала? Циркуляция материалов? Или пунктуальность? Каждый из этих аспектов сам по себе уже трудно оценить. Но даже если удастся, как взвесить эти факторы по отношению друг к другу?
Очень важно понимать, что оптимальное решение вовсе не означает решение идеальное. Оптимизация происходит с массой ограничений, и пожелания к решению противоречат друг другу. Например, максимальное количество пассажиров и дешевизна перевозок противоречат максимальному комфорту. Оптимальное решение – это лучшее, что мы можем сделать при заданных ограничениях и приоритетах.
В реальных задачах необходимо, чтобы математики и менеджеры сотрудничали и прислушивались друг к другу. Менеджеры должны уметь расставить приоритеты и обозначить ограничения. Математики должны уметь не только запустить в ход свои многогранники, но и вникнуть в особенности данной задачи. И тогда мы получим новые красивые результаты, которые воплотятся в значительных проектах. Как написал авторам сам Схрейвер: «Это был масштабный проект, но за ним стояла очень интересная, чистая математика». А свою статью он закончил словами: «Математика железных дорог пока далека от совершенства».