13. Ошибки суммируются
Многие цифры бывают очень точными, но это не означает, что они правильные.
Люди по привычке говорят: «Мне нужна точная информация». Но невозможно совместить скорость и точность при получении данных. Понимание, в какой точке вы сейчас находитесь, позволяет мириться с определенной неясностью, поскольку хоть какая-то информация все-таки лучше полного ее отсутствия. Невозможно обладать всеми данными, которые вам необходимы.
Даже сказать, сколько товаров и услуг производит наше государство, мы можем лишь приблизительно, с точностью до плюс-минус нескольких миллиардов. При этом мы все равно указываем подозрительно точные цифры в политических целях и для создания газетных статей на тему эффективности и роста экономики.
Ежеквартально все страны оценивают совокупную стоимость всех товаров и услуг, реализованных в национальной экономике, – валовой внутренний продукт (ВВП). Уровень ВВП и темпы его роста – один из самых важных экономических индикаторов, так как он оказывает влияние на политику правительства и центрального банка страны. Эти показатели помогают компаниям принимать решения, стоит ли инвестировать средства и куда именно. Они информируют, находится ли экономика страны в стадии роста или рецессии, и первыми сообщают об изменениях в ней.
Ежеквартальную публикацию показателя ВВП всегда ожидают с нетерпением, как и статистику по уровню безработицы, кредитованию или инвестициям. Единственная проблема заключается в том, что этот показатель будет заведомо неправильным.
Это можно утверждать с уверенностью, потому что вся официальная статистика впоследствии уточняется. Показатель ВВП уточняется в следующем квартале, году и так далее. Специалисты Организации экономического сотрудничества и развития (ОЭСР), международной экономической организации развитых стран, проанализировали индикаторы ВВП, которые публиковались в последнее время, и пришли к заключению, что, как правило, через три года средняя коррекция по всем странам составила 0,2 процентных пункта. Мелочь? Но эта мелочь составляет среднюю погрешность измерения в $200 млрд.
Так происходит не потому, что специалисты по статистике не справляются с работой. Показатель ВВП, как и уровня безработицы, создания новых рабочих мест или годового оборота вашей компании, складывается из многих цифр, которые измеряются отдельно. Каждый из этих отдельных показателей может иметь погрешность, и эти погрешности суммируются.
Максимально возможная точность статистических данных чрезвычайно важна. Однако имеет значение еще один момент – фактор времени: нам нужно хотя бы примерно понимать, в какой точке мы сейчас находимся. Если бы мы три года ждали точного показателя ВВП, правительство и бизнес просто не смогли бы принимать решения. Это компромиссный вариант.
Аналогичным образом вам требуются максимально точные данные, которые вы можете получить в нужное время. Получить их без ошибки практически невозможно, поэтому вам предстоит решить, стоит ли ждать, пока не станут доступны более качественные данные, или потратить время на проведение более точных расчетов. Обычно примерного грубого расчета может оказаться вполне достаточно, если всем известен предел погрешности.
Итак, перед нами две проблемы: одно дело, если вы готовите отчет, а другое – если принимаете решение, опираясь на данные. Мы склонны переоценивать надежность измеряемых данных, а также находить закономерности и тренды в том, что может оказаться лишь погрешностью в вычислениях.
Простая практика – не преувеличивать важность точности при составлении таблиц и диаграмм. Нередко мы поддаемся этому, так как в Excel высчитываются проценты с точностью до двух знаков после запятой. Предположим, вы проводите опрос коллег, где лучше организовать рождественскую вечеринку, и получаете 23 ответа:
Согласно моей программе по созданию таблиц, это означает:
Но в чем суть десятичных значений? Вполне достаточно: 17 %, 57 % и 26 %. Хотя фактически цифры 4, 13 и 6 и так сообщают вам все, что нужно: большинство ваших коллег предпочитают пойти в ресторан. К показателям, которые получаются с помощью измерения, тоже следует относиться осмотрительно. Например, показатель вашей массы тела слегка изменяется в течение дня, поэтому не нужно бить тревогу, если сегодня после плотного ужина ваш вес на 0,5 кг больше, чем вчера утром. Это может быть как изменением массы тела, так и погрешностью вычислений. Возможно, в некоторых случаях оптимальным вариантом будет брать среднее арифметическое после нескольких измерений, но опять-таки не перестарайтесь с точностью.
Анализируя результаты исследований, подойдите к вопросу с другой стороны. Публикуемая статистика всегда должна приводиться с возможной погрешностью вычислений. В качественных таблицах и диаграммах отражается погрешность вычислений на коэффициент достоверности (90 % или 95 % – наиболее характерные показатели). Погрешность плюс-минус 2 % на коэффициент достоверности 90 % означает, что, если провести измерения 100 раз, 90 раз полученный результат не будет отклоняться от опубликованного показателя больше чем на 2 % в любую сторону.
Это чрезвычайно важная информация, если вы опираетесь на опубликованную статистику при принятии решений. Если статистические данные вам предоставляет какая-то компания, попросите ее отмечать эти интервалы в виде планок погрешности.
Столбец справа кажется меньше левого, но при этом планки погрешности пересекаются. Сложно сказать, означает ли это, что статистические данные, которые мы измеряли, разнятся в двух группах, учитывая наш доверительный интервал (если планки погрешности не пересекаются, тогда в этом можно быть уверенными).
Приведу пример. Недавно мне представили исследование оценки уровня обеспокоенности генеральных директоров компаний вопросами безопасности по шкале от 1 до 10. Компания, проводившая исследование, была счастлива, так как предлагаемый ими сервис направлен на решение проблемы безопасности, которая в исследовании названа самой серьезной с индексом 6,9. При этом индексы других проблем варьировались между 6,8 и 6,5. Это заставило меня уточнить у авторов исследования, насколько велики были планки погрешности. Выяснилось, что в ходе исследования опросили лишь небольшое число респондентов, их ответы сильно различались и все, что можно было утверждать с относительной достоверностью, – это что руководители компаний в более или менее равной степени обеспокоены многими проблемами безопасности. Если бы авторы исследования провели его еще раз с другой похожей группой респондентов, порядок приоритетности, скорее всего, был бы уже другим.
Этот отрицательный результат фактически представляет собой весьма полезную информацию: результаты исследования говорят, что руководители компаний не выделяют одну-единственную угрозу безопасности, а значит, они, вероятно, более восприимчивы к новой информации и обучению, чем к попыткам продать им одно средство для решения конкретной проблемы. Однако сделать такой вывод было бы практически невозможно, если слишком высоко оценить правильность результата, потому что данные кажутся точнее, чем на самом деле.