Книга: Мусорная ДНК. Путешествие в темную материю генома
Назад: Глава 14. Проект ENCODE, или Как большая наука взялась за мусорную ДНК
Дальше: Потенциальное против реального

Множественные параметры

ENCODE рассчитывал долю функционирующих участков в нашем геноме, объединив всевозможные данные. В число этих данных вошла и информация о молекулах РНК, которые удалось обнаружить участникам проекта. Среди этих РНК оказались представлены как кодирующие белки, так и не кодирующие их, то есть мусорные РНК. Все они имели самую разную длину — от молекул протяженностью в тысячи нуклеотидных оснований до молекул в сотню раз меньше. Кроме того, ENCODE считал геномные области имеющими функции, если такие зоны несли на себе определенные комбинации эпигенетических модификаций, обычно связываемые с функциональными областями. Другие подходы предполагали, в частности, анализ участков, которые образуют петли и благодаря этому сближаются. Еще одна методика подразумевала характеризацию генома по специфическим физическим свойствам, связываемым с той или иной функцией.
Свойства эти отличались у разных типов человеческих клеток, что подтвердило гипотезу, согласно которой клетки могут использовать одну и ту же геномную информацию весьма гибко. К примеру, изучение образования петель показало, что одна разновидность взаимодействий между различными участками генома наблюдается лишь у каждого третьего из исследованных типов клеток7. Это позволяет предположить, что сложная трехмерная укладка нашего генетического материала — явление комплексное и зависящее от типа клетки.
Изучая физические характеристики, обычно связываемые с регуляторными областями, ученые пришли к выводу, что регуляторные участки ДНК также активируются в зависимости от типа клетки — и что, в свою очередь, характер клетки (то, какой она станет) формируется под действием этой мусорной ДНК8. К этому выводу исследователи пришли после того, как выявили около 3 миллионов таких мест (сайтов) путем анализа клеток 125 различных типов. Это не означает, что у клеток каждого типа 3 миллиона сайтов. Это лишь означает, что, проанализировав все эти клеточные типы, ученые обнаружили 3 миллиона сайтов. Опять-таки, это наводит на мысль, что регуляторный потенциал генома может использоваться по-разному — в зависимости от нужд той или иной клетки. Распределение сайтов по клеточным типам упрощенно показано на рис. 14.2.

 

 

Рис. 14.2. Анализируя наборы данных проекта ENCODE, ученые выявили свыше трех миллионов сайтов с характеристиками регуляторных областей (исследуя множество клеточных линий человека). Площади кругов отражают распределение таких сайтов. Большинство их обнаруживали в клетках двух и более типов, хотя значительная их доля оказалась специфической для отдельных типов клеток. И лишь очень малую часть сайтов удалось найти в каждой из проанализированных клеточных линий.

 

Свыше 90% регуляторных участков, выявленных благодаря этому методу, находились более чем за 2500 пар нуклеотидных оснований от начала ближайшего гена. Иногда они располагались вдали от всех генов, а иногда — в мусорной области, входящей в состав гена, но все равно они размещались далеко от его начала.
Большинство промоторов генов ассоциированы более чем с одним таким участком, а каждый такой участок обычно ассоциирован более чем с одним промотором. Однако, опять-таки, наши клетки, судя по всему, контролируют генетическую экспрессию отнюдь не прямолинейно. Они используют сложные сети взаимодействующих узлов.
Среди наиболее поразительных данных — информация, позволяющая предположить, что более 75% нашего генома хоть когда-нибудь, хоть в каких-нибудь клетках копируется в РНК9. Любопытное предположение. Никто не мог ожидать, что три четверти мусорной ДНК наших клеток может реально использоваться для производства РНК. При сравнении информационных РНК, кодирующих белки, с длинными некодирующими РНК ученые выявили существенную разницу в картине экспрессии. В 15 изученных клеточных линиях информационные РНК, кодирующие белки, гораздо охотнее экспрессировались во всех клеточных линиях, чем длинные некодирующие РНК (см. рис. 14.3). Исследователи пришли к выводу: длинные некодирующие РНК играют определяющую роль в управлении судьбой клеток.
Взятые в совокупности, данные из статей, опубликованных в рамках проекта ENCODE, рисуют картину весьма активного человеческого генома с чрезвычайно сложными схемами взаимодействия и «общения». В сущности, мусорная ДНК набита информацией и инструкциями. Нелишне повторить здесь указания гипотетического режиссера из Введения: «Если вы ставите „Гамлета“ в Ванкувере и „Бурю“ в Перте, в такой-то строке „Макбета“ ударение должно падать на четвертый слог. Если только при этом любительская труппа не ставит „Ричарда III“ в Момбасе, в Кито не идет дождь»10.

 

 

Рис. 14.3. Экспрессию генов, кодирующих белки, и генов, не кодирующих белки, проанализировали на примере пятнадцати различных типов клеток. Выяснилось, что гены, кодирующие белки, гораздо чаще экспрессируются во всех типах клеток, чем области, которые вырабатывают молекулы РНК. не кодирующие белки.

 

Всё это звучит очень вдохновляюще. Почему же тогда многие относятся к значимости этих данных с таким скептицизмом? Отчасти из-за того, что статьи, вышедшие в рамках проекта ENCODE, явили миру очень уж громкие заявления. Самым громким стало утверждение, что целых 80% генома обладают функциями. Проблема в том, что в основе некоторых таких утверждений лежали косвенные измерения самих функций. Особенно это касается исследований, где заключение о наличии функции выводили либо из присутствия эпигенетических модификаций, либо из других физических характеристик ДНК и ассоциированных с ней белков.
Назад: Глава 14. Проект ENCODE, или Как большая наука взялась за мусорную ДНК
Дальше: Потенциальное против реального