Книга: Озадачник: 133 вопроса на знание логики, математики и физики
Назад: 84. Считаем в уме I
Дальше: 86. Считаем в уме III

85. Считаем в уме II

С точностью до третьей значащей цифры посчитайте в уме корень 100-й степени из числа e (e = 2,718281828… – основание натурального логарифма). Это будет:
Варианты ответов
1. 1,01.
2. 1,04.
3. 1,11.
Правильный ответ: 1
Чтобы решить эту задачку, нужно помнить две вещи. Первое: извлечь корень n-й степени – то же самое, что возвести в степень 1/n, √n(a) = a1/n, в нашем случае нужно отыскать значение e в степени 1/100 = 0,01. Второе: при малых значениях аргумента функция ex (экспоненциальная функция, фундаментальная в математике – встречается без малого везде) может быть приближенно записана совсем просто: ex ≈ 1 + x. Значит, искомое значение составит 1 + 0,01 = 1,01. Сравним с более точным (до 10-го знака) значением – это 1,010050167, великолепное совпадение! Приближенные методы, вообще, бывают довольно точны (главное контролировать эту точность). Скажем, корень десятой степени из e равен 1,105170918, а вычисленный по нашей приближенной формуле – 1,1, разница в полпроцента. Правда, если мы посчитаем e1 (равно e, если считать точно, и 2 по нашей формуле), то разница будет уже ощутимой, что объяснимо: для таких больших значений x наше приближение уже плохо работает, увы. Но его можно продолжать уточнять, почитайте, если интересно, про разложение экспоненты в ряд Тейлора, вы узнаете, что при любом (sic!) значении x, даже при миллионе или миллиарде, можно приближенно записать эту функцию полиномом (степенной функцией) с желаемой точностью!

 

Назад: 84. Считаем в уме I
Дальше: 86. Считаем в уме III