58. Какой длины?
Берем отрезок длины 1, выламываем из него посередине треть и заменяем ее на два отрезка, представляющие собой две стороны равностороннего треугольника, третьей стороной которого служит выброшенный нами отрезок. Затем с каждым звеном полученной ломаной проделываем то же самое, потом с новой ломаной, и так далее до бесконечности. Какой будет длина полученной в итоге линии?
Варианты ответов
1. 4/3.
2. Сумма бесконечного сходящегося ряда 1 + 1/3 + 1/3² +… = 3/2.
3. И не сосчитаешь!
Правильный ответ: 3
Фигура, которая получается в итоге, – это кривая (еще говорят «снежинка») Коха (по имени автора, шведского математика Хельге фон Коха), один из самых известных фракталов – видимо, потому, что его проще всего рисовать. А еще несложно посчитать его длину на каждом этапе «сборки»: когда мы ломаем отрезок первый раз, мы заменяем среднюю часть (длины 1/3) на два отрезка, каждый такой же длины (треугольник по условию равносторонний). Сложим длины всех отрезков (1/3 + 1/3 + 1/3 + 1/3), получим 4/3. А какой будет длина ломаной на втором шаге? Очевидно, длина каждого маленького отрезка (1/3) увеличится, как видим из предыдущего рассуждения, в 4/3 раз, всего таких отрезков четыре, значит, суммарная длина всей ломаной будет уже (4/3)². И с каждым шагом эта степень будет увеличиваться, длина ломаной растет, причем экспоненциально, т. е. с каждым шагом все быстрее! Так, уже на четвертом шаге она будет превышать первоначальную втрое, на десятом – в 18 раз, на сотом – в 3 трлн раз! Фракталы на плоскости – удивительные фигуры, не имеющие ни длины (она, как видим, бесконечна), ни площади (она-то как раз равна нулю). Любопытно, что в жизни фракталы, про которые большинство людей даже не знает, встречаются на каждом шагу: это и деревья, и облака, и, конечно, снежинки.