47. Митин прямоугольник
У Мити есть набор одинаковых картонных квадратов, из которых он выкладывает различные фигуры. В частности, ему нравится выкладывать прямоугольники, причем такие, у которых число внешних (идущих по периметру прямоугольника) квадратов равно числу внутренних (все остальные – те, что внутри). Сколько таких прямоугольников может выложить Митя?
Варианты ответов
1. Это невозможно в принципе, число внешних и внутренних квадратов всегда будет различным.
2. Такие прямоугольники существуют, их ровно две штуки.
3. Если число квадратов в наборе неограниченно, то таких прямоугольников может быть сколько угодно.
Правильный ответ: 2
Обозначим стороны прямоугольника как a и b. Тогда число внутренних квадратов – это площадь «обрезанного» прямоугольника, у которого срезали внешние квадраты, расположенные по периметру, и оно равно (a – 2) (b – 2). Число же внешних квадратов – это 2a + 2b – 4. Приравнивая две эти формулы и определяя b через a, получим b = 4 (a – 2)/(a – 4). На первый взгляд, ввиду того, что a может принимать какие угодно значения, у нас и правда бесчисленное множество решений. На деле это не так, потому что решения нас устраивают не абы какие, а только диофантовы (от имени древнегреческого математика Диофанта Александрийского, III век н. э.) – т. е. такие, которые выражаются в целых числах (требование, чтобы число квадратов было целым, представляется самоочевидным). А таких решений только два: a = 5, b = 12; a = 6, b = 8. Есть еще симметричные решения, где a и b меняются местами (a = 8, b = 6 и a = 12, b = 5), но это на деле те же самые прямоугольники, просто повернутые на 90°.