Книга: Озадачник: 133 вопроса на знание логики, математики и физики
Назад: 31. Автолюбительские байки
Дальше: 33. Без семьи

32. На шахматной доске

Маленький Алеша втихаря испортил шахматную доску – на каждой клетке написал маркером по числу (все числа – натуральные, т. е. положительные целые) и при этом (вот же хитрец!) расположил их так, что в каждой строке и в каждом столбце получившейся таблицы число в клетке, расположенной не у края доски, есть среднее арифметическое от суммы двух его ближайших соседей. Какие числа стоят в углах доски, если известно, что их сумма равна 28?
Варианты ответов
1. 7, 7, 7, 7.
2. 2, 12, 2, 12.
3. 1, 7, 13, 7.
Правильный ответ: 1
Эту в общем математическую задачу можно решить логически – методом угадывания. О, зря смеетесь, это очень мощный метод! Например, им с успехом пользовался физик Я. Б. Зельдович, признававшийся: «Я решаю только те задачи, на которые уже знаю ответ». (В «Озадачнике» мы его тоже уже задействовали – см. задачу № 25.) Итак, в каком же самом простом случае число есть среднее арифметическое двух других? Когда все три числа равны между собой. Допустим, все числа на доске равны одному и тому же числу – тогда это число 7 (четыре семерки в углах дают в сумме 28), и это и есть решение. Осталось доказать, что оно единственное, – просто наметим доказательство, не углубляясь в детали. Главное – показать, что каждая строка (столбец) нашей шахматной «таблицы» обязана быть арифметической прогрессией. Далее, поскольку все числа натуральные (никаких отрицательных или не целых), то прогрессии неодинаковых чисел с наименьшей суммой значений в углах – это 1, 2, 3, 4, 5, 6, 7, 8; 2, 3, 4, 5, 6, 7, 8, 9; и т. д. – до 8, 9, 10, 11, 12, 13, 14, 15 – т. е. сумма «углов» равна 1 + 8 + 15 + 8 = 32, меньше чем 32 не получится ни при каких раскладах. Значит, наше решение единственное, все в порядке.

 

Назад: 31. Автолюбительские байки
Дальше: 33. Без семьи