Нормально ли число π?
Десятичные знаки числа π кажутся случайными, но они не могут быть по-настоящему случайными, потому что всякий раз при вычислении числа π вы получаете ровно одно и то же (если, конечно, не ошибаетесь в процессе вычисления). Считается, что, как почти в любой случайной последовательности цифр, где-то в десятичном выражении числа π встречается любая конечная последовательность цифр. Более того, данная последовательность встречается бесконечно часто, хотя и с кучей мусора между двумя последовательными включениями, и в той же пропорции, которую следовало бы ожидать для случайной последовательности.
Можно доказать, что это свойство, известное как нормальность, выполняется для «почти всех» чисел: в любом достаточно большом наборе чисел доля нормальных подходит сколь угодно близко к 100 %. Но это правило оставляет и лазейку, поскольку любое конкретное число, скажем π, может оказаться исключением. Но является ли оно исключением? Мы не знаем. До недавнего времени этот вопрос казался безнадежным, но формулы, подобные приведенным выше, открыли новую линию атаки, которая в принципе может решить вопрос в отношении двоичных (или шестнадцатеричных) чисел.
Связь между этими задачами возникает через другую математическую процедуру, итерационную. Здесь мы начинаем с какого-то числа, применяем к нему некое правило, чтобы получить другое число, и последовательно применяем то же правило к полученным числам, чтобы получить некую последовательность чисел. К примеру, если мы начнем с 2 и применим правило «возвести в квадрат», получим последовательность
2 4 16 256 65 636 4 294 967 296 …
Двоичные знаки числа, к примеру ln 2, можно получить при помощи итерационной формулы
начиная с x0 = 0. Пояснение (mod 1) означает «вычесть целую часть», так что π (mod 1) = 0,14159… Эта формула привела бы к доказательству того, что ln 2 нормален по основанию 2, если бы удалось показать, что полученные в результате числа равномерно распределены по интервалу от 0 до 1. Подобная «равнораспределенность» встречается довольно часто. К несчастью, никто не знает, как доказать, что она распространяется на приведенную итеративную формулу, но сама по себе эта идея перспективна и, вполне возможно, со временем даст результат.
Для π тоже существует похожая, но более сложная итеративная формула:
Если эта формула дает равномерное распределение, то π нормально в двоичной системе.
Все вышеизложенное приводит нас наконец к очень странному открытию. Растянем интервал от 0 до 1 в 16 раз, так что yn = 16xn будут распределены на интервале от 0 до 16. Тогда целая часть последовательных yn будет лежать в интервале от 0 до 15. Эксперимент показывает, что эти числа в точности соответствуют последовательным шестнадцатеричным знакам числа π – 3. Этот факт проверен на компьютере для первых 10 млн знаков. Получается, по существу, что это дает нам формулу для n-го шестнадцатеричного знака π. Чем дальше вы заходите, тем сложнее становятся вычисления, и на упомянутую проверку ушло 120 часов.
Есть веские причины ожидать, что это утверждение подтвердится, но пока оно недотягивает до строгого доказательства. Известно, что ошибок, если они есть, очень мало. Поскольку на первых 10 млн шагов их не обнаружено, вероятность того, что они встретятся позже, составляет около одной миллиардной. Однако это не доказательство – всего лишь отличная причина надеяться, что доказательство существует и его можно найти.
Последняя гипотеза, также основанная на убедительных данных, показывает, насколько необычна эта область математики. А именно: ничего подобного нельзя сделать с другой известной константой – числом e, основанием натуральных логарифмов, приблизительно равным 2,71828. Похоже, в числе π есть что-то особенное в сравнении с числом e.