Книга: Математические головоломки профессора Стюарта
Назад: Невозможный маршрут
Дальше: Сноски

Ссылки на источники

«О форме апельсиновой кожуры». Слева и в центре рисунки: Laurent Bartholdi and André Henriques. Orange peels and Fresnel integrals, Mathematical Intelligencer 34 No. 4 (2012) 1–3.
"О форме апельсиновой кожуры". Справа рисунок: Luc Devroye.
"Дело о картонных коробках". Концепция загадки с коробками: Moloy De.
"Пифилология, пиэмы и пиллиш". Отрывок из Not A Wake: Mike Keith.
"Математические хайку". Хайку: Daniel Mathews, Jonathan Alperin, Jonathan Rosenberg.
"Загадка гусиного клина". Фото:
"Поразительные квадраты". Поразительные квадраты: Moloy De и Nirmalya Chattopadhyay.
"Загадка тридцати семи". Загадка тридцати семи: основана на наблюдениях Stephen Gledhill.
"Четыре псевдоку без указаний". Псевдоку без указаний: Gerard Butters, Frederick Henle, James Henle and Colleen McGaughey. Creating clueless puzzles, Mathematical Intelligencer 33 No. 3 (Fall 2011) 102–105.
"Загадки простого числа". Рисунок: Eric W. Weisstein, «Гипотеза Брокара» с сайта MathWorld:
"Оптимальная пирамида". Справа фото: Steven Snape.
"Путаница с инициалами". Фото: с разрешения архива Университета Висконсина в Мэдисоне.
"Загадка песков". Сверху слева фото: [George Steinmetz, с разрешения Anastasia Photo].
"Загадка песков". Сверху справа фото: снимок камеры HiRISE на спутнике Марса Mars Reconnaissance Orbiter, NASA.
"Загадка песков". Снизу справа рисунок: Rudi Podgornik.
"Загадка песков". Снизу слева рисунок: Veit Schwämmle and Hans J. Herrmann. Solitary wave behaviour of sand dunes, Nature 426 (2003) 619–620.
"Бросание монетки – несправедливый жребий". Рисунок: Persi Diaconis, Susan Holms and Richard Montgomery, Dynamical basis in the coin toss, SIAM Review 49 (2007) 211–223.
"Непериодическая мостовая". 3-тий и 4-ый рисунки: Joshua Socolar and Joan Taylor. An aperiodic hexagonal tile, Journal of Combinatorial Theory Series A 118 (2011) 2207–2231;
«Кольца из правильных многогранников». Рисунки: Michael Elgersma and Stan Wagon, Closing a Platonic gap, The Mathematical Intelligencer (2014) готовится к выходу.

 

Следующие рисунки перепечатываются в соответствии с лицензией Creative Commons Attribution 3.0 Unported с указанием источника, как требуется в оригинальной публикации:

 

«Загадки простого числа», «График зависимости». Krishnavedala.
"Оптимальная пирамида". Рисунок слева Ricardo Liberato.
"Оптимальная пирамида", "Все, что осталось от Черной пирамиды Аменемхета III". Tekisch.
"Сила мидий". Andreas Trepte,
"Озера Вады". Braindrain0000.
"Озера Вады", "Три области, соответствующие решениям кубического уравнения". LutzL
"Грек-интегратор". Балтимор, музей Walters Art Museum.

notes

Назад: Невозможный маршрут
Дальше: Сноски

Вася
Понравилсоь
khvicha
нашел все закономерности простых чисел от а до я но куда все это посылать кому показать знаю если не покажу всем придется еще долго ждать чтоб найти этот метод то что сейчас прочитал это мизер и понятно что не знают и почему -все есть что ищут все если кто поможет донести до математиков так чтоб потом не присвоили себе буду рад звоните +99555485772 или пишите [email protected]
grapoltok
Совершенно верно! Это хорошая мысль. Призываю к активному обсуждению. --- Я думаю, что Вы не правы. Я уверен. Пишите мне в PM, пообщаемся. скачать fifa, скачать fifa а также fifa 15 таблетки скачать торрент скачать fifa
natheemugh
Ох уж эти славянки! --- Вы не правы. Я уверен. Могу это доказать. Пишите мне в PM. скачать fifa, скачать fifa или скачать fifa 15 на ios бесплатно скачать fifa