Книга: Математические головоломки профессора Стюарта
Назад: Грек-интегратор Из мемуаров доктора Ватсапа
Дальше: Откуда у леопарда пятна

Сумма четырех кубов

Сумма четырех квадратов, как и многие другие математические загадки, имеет давнюю историю. Греческий математик Диофант, чья «Арифметика» примерно 20 г. н. э. была первым учебником, в котором использовалась некая система алгебраических обозначений, задал вопрос, является ли каждое положительное целое число суммой четырех полных квадратов (0 разрешен). Несложно проверить это утверждение экспериментально для небольших чисел, к примеру:

 

5 = 2² + 1² + 0² + 0²;
6 = 2² + 1² + 1² + 0²;
7 = 2² + 1² + 1² + 1².
Теперь, стоило вам подумать о том, что для 8 потребуется еще одна 12, то есть пять квадратов, на помощь приходит 4:

 

8 = 2² + 2² + 0² + 0².

 

Эксперименты с более крупными числами позволяют с серьезным основанием предположить, что ответ должен быть «да», однако эта задача оставалась нерешенной более 1500 лет. Она получила известность как задача Баше по имени Клода Баше де Мезириака, опубликовавшего французский перевод «Арифметики» в 1621 г. Доказательство нашел Жозеф-Луи Лагранж в 1770 г. Не так давно были найдены более простые доказательства, основанные на абстрактной алгебре.
А как насчет суммы четырех кубов?
В том же 1770 г. Эдвард Уоринг заявил без доказательства, что любое положительное целое число есть сумма не более чем 9 кубов и 19 четвертых степеней, и задал вопрос, можно ли утверждать что-то подобное о более высоких степенях. То есть для заданного числа k существует ли некий конечный предел количества k степеней, необходимых для выражения любого положительного целого числа в виде их суммы? В 1909 г. Давид Гильберт доказал, что ответ на этот вопрос – «да». (Нечетные степени отрицательных чисел отрицательны, и это сильно меняет правила игры, так что пока мы ограничиваемся только степенями положительных чисел.)
Число 23 определенно требует 9 кубов. Единственные возможные слагаемые здесь – 8, 1 и 0, и лучшее, что можно сделать, – это сложить две восьмерки и семь единиц:

 

23 = 2³ + 2³ + 1³ + 1³ + 1³ + 1³ + 1³ + 1³ + 1³.

 

Таким образом, в общем правиле кубов не может быть меньше 9. Однако это число можно и уменьшить, если согласиться на конечное число исключений. К примеру, в реальности 9 кубов требуется только для чисел 23 и 239; все остальные можно получить с использованием не более чем 8 кубов. Юрий Линник снизил это число до 7, допустив еще несколько исключений, и сегодня считается, что правильный ответ, допускающий конечное число исключений, – это 4. Наибольшее известное число, для записи которого необходимо больше 4 кубов, – это 7 373 170 279 850, и предполагается, что более крупных чисел с таким свойством не существует. Так что очень возможно – но пока вопрос остается открытым, – что любое достаточно большое положительное целое число есть сумма четырех положительных кубов.
Но, как я уже сказал, куб отрицательного числа отрицателен. Это порождает новые возможности, отсутствующие у четных степеней. Так,

 

23 = 27 – 1–1 – 1–1 = 3³ + (–1)³ + (–1)³ + (–1)³ + (–1)³,

 

то есть достаточно 5 кубов, тогда как в случае только положительных или нулевых кубов требуется 9, как мы только что видели. Но можно и еще улучшить результат: 23 можно выразить с использованием всего 4 кубов:

 

23 = 512 + 512 – 1 – 1000 = 8³ + 8³ + (–1)³ + (–10)³.

 

Разрешение на использование отрицательных чисел означает, что используемые кубы могут быть намного больше (если не обращать внимания на знак «–») самого числа. В качестве примера покажем, что число 30 можно записать в виде суммы 3 кубов, но придется постараться:

 

30 = 2 220 422 932³ + (–283 059 965)³ + (–2 218 888 517)³.

 

То есть мы не можем систематически просмотреть ограниченное число вариантов, как в случае, когда рассматриваем только положительные кубы.
Эксперименты привели нескольких математиков к гипотезе о том, что всякое целое число есть сумма 4 (положительных или отрицательных) целых кубов. Пока истинность этого утверждения окончательно не установлена, хотя свидетельств в его пользу хватает. Компьютерные расчеты подтверждают, что любое положительное целое число вплоть до 10 млн есть сумма 4 кубов. В. Демьяненко доказал, что любое число, которое нельзя представить в виде 9k ± 4, всегда представимо как сумма 4 кубов.
Назад: Грек-интегратор Из мемуаров доктора Ватсапа
Дальше: Откуда у леопарда пятна

Вася
Понравилсоь
khvicha
нашел все закономерности простых чисел от а до я но куда все это посылать кому показать знаю если не покажу всем придется еще долго ждать чтоб найти этот метод то что сейчас прочитал это мизер и понятно что не знают и почему -все есть что ищут все если кто поможет донести до математиков так чтоб потом не присвоили себе буду рад звоните +99555485772 или пишите [email protected]
grapoltok
Совершенно верно! Это хорошая мысль. Призываю к активному обсуждению. --- Я думаю, что Вы не правы. Я уверен. Пишите мне в PM, пообщаемся. скачать fifa, скачать fifa а также fifa 15 таблетки скачать торрент скачать fifa
natheemugh
Ох уж эти славянки! --- Вы не правы. Я уверен. Могу это доказать. Пишите мне в PM. скачать fifa, скачать fifa или скачать fifa 15 на ios бесплатно скачать fifa