Книга: Величайшие математические задачи
Назад: Гипотеза Коллатца
Дальше: Гипотеза об одиночестве бегуна

Существование правильного кубоида

Здесь в качестве начального пункта берется существование пифагоровых троек и формула для них, а затем вся проблема переводится в третье измерение. Эйлеров параллелепипед — это кубоид (блок в форме кирпича) с целыми ребрами, все грани которого имеют целые диагонали. Самый маленький параллелепипед Эйлера открыл в 1719 г. Пауль Хальке. Его ребра составляют 240, 117 и 4; диагонали граней равны 267, 244 и 125. Эйлер нашел формулы для таких прямоугольных параллелепипедов, аналогичные формуле для пифагоровых троек, но они выдают не все возможные решения.
Неизвестно, существует ли совершенный кубоид, т. е. существует ли такой параллелепипед Эйлера, главная диагональ которого тоже имеет целую длину. (Главная диагональ — это отрезок, соединяющий противоположные вершины прямоугольного параллелепипеда и проходящий сквозь его внутреннюю часть. Таких отрезка четыре, но все они равны по длине.) Известно, что формулы Эйлера не дают примера такого параллелепипеда. Он, если существует, должен удовлетворять нескольким условиям — к примеру, по крайней мере одно его ребро должно быть кратно 5, другое — 7, третье — 11, четвертое — 19. Компьютерные эксперименты показали, что длина одного из ребер должна быть не менее одного триллиона.
Есть достаточно близкие варианты. У прямоугольного параллелепипеда со сторонами 672, 153 и 104 главная диагональ целая, как и две из трех диагоналей граней. В 2004 г. Хорхе Сойер и Клиффорд Рейтер доказали, что существуют совершенные непрямоугольные параллелепипеды. Грани таких параллелепипедов представляют собой не прямоугольники, а параллелограммы, а сам параллелепипед как бы скошен на сторону. Ребра совершенного непрямоугольного параллелепипеда имеют длины 271, 106 и 103; малые диагонали граней равны 101, 266 и 255; большие диагонали граней — 183, 312 и 323; внутренние диагонали (а у такого параллелепипеда они все разные) имеют длины 374, 300, 278 и 272.
Назад: Гипотеза Коллатца
Дальше: Гипотеза об одиночестве бегуна

Пупа
Тут что-то перепутали
Грант Геворкян
Доказательство несуществования совершенного кубоида очень просто.