Названия «P» и «NP», которыми мы пользуемся и по сей день, впервые появились в работе Карпа. Однако для самых трудных задач из класса NP термина у него не было. Кук использовал крайне специфичное обозначение, deg({DNF tautologies}), которое расшифровывалось как «с полиномиальным уровнем сложности по отношению к сложности множества тавтологий, записанных в дизъюнктивной нормальной форме». Карп употреблял выражение «полиномиально полные». Оба варианта звучали как-то не очень.
В итоге с этим вопросом разобрался Дональд Кнут, который в 1974 году получил премию Тьюринга за исследования в области информатики и трехтомный (на тот момент) труд «Искусство программирования». В 1973 году, работая над четвертым томом монографии, Кнут в полной мере осознал важность проблемы равенства P и NP и решил взять инициативу на себя. Ученый запустил опрос населения по почте – не электронной, без которой он и сейчас прекрасно обходится. Впрочем, в те времена без электронной почты удавалось прекрасно обходиться всем.
В опросе предлагалось на выбор три названия: «титанические», «сверхтрудные» и «тяжелые», однако ни одно из них не смогло набрать достаточного количества голосов. В ответ люди присылали собственные варианты – от самых наивных вроде «неподдающиеся» или «упрямые» до откровенно насмешливых «не лыком шиты» или «черт ногу сломит».
Победителем конкурса стало название «NP-полные», которое после довольно бурных обсуждений предложили сотрудники Лабораторий Белла в Нью-Джерси. Этот термин, также отсутствовавший в первоначальном списке, обязан своим появлением математической логике, где система фактов, или аксиом, называется полной, если с ее помощью можно обосновать любое истинное высказывание в данной логической теории. Аналогичным образом, задача из класса NP называется NP-полной, если с ее помощью можно решить все остальные NP-задачи.
Кнут принял решение оставить этот вариант, хотя и чувствовал некоторую неудовлетворенность: ему хотелось, чтобы название состояло из одного слова и при этом давало интуитивное представление о трудных переборных задачах, т. е. было доступно самой широкой публике.
В 1974 году, излагая результаты последних исследований, Кнут написал: «Вообще-то термин „NP-полные“ кажется мне слишком техническим для широкой аудитории. Зато он по крайней мере адекватный».
Название «NP-полные» очень быстро вошло в стандартную терминологию. А Кнуту потребовалось почти сорок лет, чтобы закончить работу над четвертым томом.
Может, стоило все-таки попытаться придумать менее специфичное название? Причем не только для NP-полных задач, но и для самих классов P и NP? Ведь проблема равенства P и NP выходит далеко за пределы теоретической информатики, а использование этих загадочных аббревиатур, маскирующих не менее загадочные определения, затрудняет понимание проблемы непосвященными. Как бы то ни было, сейчас уже поздно: за прошедшие десятилетия термин прочно устоялся и заменить его было бы очень непросто даже при наличии достойной альтернативы.
Кнут, конечно, понимал, что если равенство классов докажут, то все его усилия по изобретению названия пропадут даром, поскольку NP-полные задачи «переедут» в класс P. Однако такая перспектива ученого не пугала. «Мне даже хочется, чтобы эта «неприятность» случилась, – пишет он. – Более того, за решение проблемы я объявляю награду: тот, кто первый докажет, что P = NP, получит от меня настоящую живую индейку». Что ж… докажите равенство P и NP – и получите миллион долларов и индейку в придачу!
Работа Карпа послужила толчком к дальнейшему развитию информатики. NP-полные задачи множились, как грибы; профессора и аспиранты по всему миру брались за известные поисковые проблемы (а также находили новые) и доказывали их NP-полноту. В классическом труде 1979 года приводится более трехсот основополагающих NP-полных задач. Число их неудержимо растет; NP-полные задачи возникают не только в информатике и математике, но и в физике, биологии, экономике и во многих других областях. Поиск по Академии Google выдает более 138000 научных статей об NP-полноте за период с 1972 по 2011 год, и в одном только 2011 году на эту тему было создано около 10000 работ. Вряд ли имеет смысл приводить здесь список всех NP-полных задач, однако мне хотелось бы дать вам представление о некоторых из них.
Существует ли в Королевстве группа из 50 человек, в которой у каждого жителя есть хотя бы один друг? NP-полная задача.
Комнаты в общежитии Королевского технологического рассчитаны на трех человек. Можно ли расселить студентов таким образом, чтобы в каждой комнате жили только друзья? NP-полная задача.
Судоку – это японская головоломка с числами. В классическом варианте используется квадратная сетка 9 × 9 (рис. 4.2).
Рис. 4.2. Классический вариант судоку
Рис. 4.3. Решение судоку из рис. 4.2
Цель игры – заполнить пустые клетки цифрами от 1 до 9 так, чтобы в каждой строке, каждом столбце и каждом жирно очерченном квадрате 3 × 3 эти цифры не повторялись.
Судоку лежит в классе NP, поскольку проверить имеющееся решение труда не составляет. Вы спросите, насколько сложно это решение найти? На самом деле все не так уж страшно: обычный среднестатистический компьютер при помощи простого перебора с возвратом решает классический вариант всего за несколько секунд.
А как обстоит дело с игрой на большом поле? Например, с сеткой 25 × 25, в которой каждая строка, каждый столбец и каждый мини-квадрат должны содержать все буквы от A до Y?
В этом случае вычисление займет уже гораздо больше времени, а с сеткой 100 × 100 вообще ни один современный компьютер не справится.
Рис. 4.4. Гигантское судоку
Поиск решения гигантского судоку – задача NP-полная. Считаете себя мастером судоку? Или знаете надежный способ решения какой-нибудь другой гигантской головоломки? Тогда в ваших руках ключ от решения задачи о выполнимости, задачи коммивояжера и тысячи других NP-полных проблем!
Есть еще много игр для одного игрока, решение которых представляет собой NP-полную задачу. Возьмем, к примеру, встроенного в Microsoft Windows «Сапера».
Рис. 4.5. «Сапер»
Число в ячейке говорит о количестве мин, расположенных в соседних с ней квадратиках – по вертикали, горизонтали и диагонали. Вы должны либо открыть ячейку, чтобы узнать это число, либо поставить на ней флажок, если думаете, что в ячейке бомба. Откроете бомбу – проиграете. Нахождение выигрышной стратегии в гигантском «Сапере» также представляет собой NP-полную задачу. На рисунке ниже показано расположение оставшихся бомб.
Другой пример – «Тетрис», в котором нужно передвигать и поворачивать фигурки так, чтобы образовывались сплошные горизонтальные ряды. Заполненный ряд тут же исчезает. Игра заканчивается, когда на экране больше не осталось свободных рядов; цель играющего – продержаться как можно дольше.
Фигурки бывают разных форм. В классическом варианте «Тетриса» вы не знаете, какая фигурка выпадет следующей. Впрочем, если бы вам даже заранее сообщили последовательность появления фигурок, выбор оптимальной стратегии все равно остался бы NP-полной задачей.
Рис. 4.6. Оставшиеся бомбы
Рис. 4.7. «Тетрис»
Кто бы мог подумать, что, научившись мастерски играть в судоку, «Тетрис» или «Сапер», можно доказать равенство P и NP и решить одну из задач тысячелетия!
Рис. 4.8. Виды фигурок в «Тетрисе»
Как насчет кубика Рубика? Наверняка это тоже NP-полная задача: ведь если даже освоение классического варианта 3 × 3 × 3 занимает столько времени, что уж говорить о больших кубах?
Рис. 4.9. Кубик Рубика. Фото: Том ван дер Занден
На самом деле все совсем не так. Благодаря такой области математики, как теория групп, у нас есть эффективные алгоритмы, способные справиться даже с гигантскими кубами. Оптимального решения они не дают, но все же позволяют собрать кубик относительно быстро вне зависимости от его начального состояния.
Верится с трудом, но это правда – кубик Рубика намного проще «Тетриса», «Сапера» и судоку.
А как обстоит дело с играми для двоих? Шахматы, шашки, го, «Отелло»? Если говорить о гигантских версиях, то они не уступают по сложности ни проблеме выполнимости, ни другим NP-полным задачам, однако к классу NP, тем не менее, не принадлежат. Вы спросите, почему? Потому что если я скажу, что белые обеспечат себе выигрыш, передвинув пешку на «e3», то вы вряд ли сможете быстро это проверить. Ученые полагают, что на самом деле эти игры намного труднее любой NP-полной задачи.