Книга: Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
Назад: Два взгляда на историю
Дальше: Глава 12. Битва при чёрной дыре

Многомирие

Что было бы, если бы Германия победила во Второй мировой войне? Или как выглядела бы сегодня жизнь, если бы астероид, 65 миллионов лет назад убивший динозавров, пролетел мимо Земли? Идея параллельных миров, расходящихся разными путями в критических точках исторического процесса, – излюбленная тема писателей-фантастов. Однако в настоящей науке я всегда отвергал подобные идеи как легкомысленную чушь. И вдруг, к своему удивлению, я обнаружил, что говорю и думаю о подобных вещах. Фактически вся моя книга как раз и посвящена параллельным вселенным: Мегаверсум представляет собой мир карманных вселенных, изолированных друг от друга, из-за того что они оказываются за пределами горизонтов друг друга.
Я далеко не первый физик, который всерьёз рассматривал возможность того, что реальность – что бы ни означало это слово – содержит помимо нашего собственного огромное количество альтернативных миров с историями, отличными от истории нашего мира. Этот вопрос является частью продолжающейся по сей день дискуссии об интерпретации квантовой механики. Где-то в середине 1950-х годов молодой аспирант Хью Эверетт III предложил радикально отличающуюся от принятой тогда интерпретацию квантовой механики, которую он назвал многомировой интерпретацией. Гипотеза Эверетта утверждает, что на каждом перекрёстке истории мир ветвится на множество параллельных вселенных, каждая из которых имеет свою альтернативную историю. Хотя это звучит как махровая спекуляция, некоторые из величайших физиков современности были доведены странностями квантовой механики до того, чтобы принять идеи Эверетта. Среди них Ричард Фейнман, Мюррей Гелл-Манн, Стивен Вайнберг, Джон Уилер и Стивен Хокинг. Многомировая интерпретация послужила источником вдохновения для антропного принципа, который впервые сформулировал в 1974 году Брэндон Картер.
На первый взгляд многомировая интерпретация Эверетта имеет мало общего с вечной инфляцией Мегаверсума. Однако мне думается, что это практически одно и то же. Я уже неоднократно подчёркивал, что квантовая механика не предсказывает поведение системы в будущем на основе её состояния в прошлом. Вместо этого она предсказывает вероятность реализации того или иного исхода эксперимента, или, правильнее, вероятность результата наблюдения. Эта вероятность описывается фундаментальным математическим объектом квантовой механики – волновой функцией.
Если вы немного знакомы с квантовой механикой и в курсе, что Шрёдингер открыл волновое уравнение, описывающее поведение электронов, то вы слышали и о волновой функции. Я хотел бы, чтобы вы забыли всё это. Волновая функция Шрёдингера представляет собой очень частный случай гораздо более общей концепции, и именно на этой более общей идее я хочу сейчас заострить ваше внимание. В любой момент, например прямо сейчас, есть многое на свете, друг читатель, что можно наблюдать в подлунном мире. Я мог бы поднять взгляд на окно над моим рабочим столом и посмотреть, не взошла ли луна. Или я мог бы сидеть и планировать эксперимент с двумя щелями (см. главу 1), а затем наблюдать расположение пятен на экране. Ещё один эксперимент мог бы состоять в наблюдении за нейтроном, который был «приготовлен» в определённое время, скажем, десять минут назад. Как вы помните из главы 1, нейтроны, не связанные в ядре, неустойчивы. В среднем (но только в среднем) нейтрон распадается в течение двенадцати минут на протон, электрон и антинейтрино. В этом случае суть наблюдения могла бы состоять в том, чтобы определить, распался нейтрон по истечении десяти минут или по-прежнему пребывает в первоначальном виде. Каждый из этих экспериментов предполагает более одного возможного результата. В самом общем смысле волновая функция представляет собой список вероятностей для всех возможных результатов всех возможных наблюдений состояний рассматриваемой системы. Если быть более точным, то она представляет собой список квадратных корней всех этих вероятностей.
Распад нейтрона является хорошей иллюстрацией для начала разговора о волновой функции. Для упрощения рассуждений предположим, что эксперимент по наблюдению нейтрона может иметь только два исхода: нейтрон либо распался, либо нет. Список вероятностей в этом случае будет очень коротким – в нём будет только две записи для волновой функции. Если первоначально нейтрон находится в нераспавшемся состоянии, то список значений его волновой функции будет состоять из двух записей: 1 и 0. Другими словами, вероятность, что первоначально нейтрон находится в нераспавшемся состоянии, равна 1, а вероятность того, что он распался, равна 0. Но уже через короткое время появляется крохотная вероятность, что нейтрон распадётся. Теперь две записи значений волновой функции в нашем списке будут отличаться от 1 и 0. Первое значение будет чуть меньше 1, а второе – чуть больше 0. Чуть больше чем через десять минут эти вероятности сравняются, а ещё через десять минут они поменяются местами: вероятность того, что нейтрон остался целым, будет стремиться к нулю, а вероятность того, что он распался на протон, электрон и антинейтрино, – к единице. Квантовая механика содержит ряд правил, позволяющих рассчитать эволюцию волновой функции со временем. В своей наиболее общей форме волновая функция описывает систему, включающую в себя всё: всю наблюдаемую Вселенную, включая наблюдателей, проводящих эксперименты. Так как в этой системе может быть более одного сгустка материи, который может быть назван наблюдателем, теория должна быть самосогласованной в отношении описания всех процессов наблюдений. Волновая функция содержит полное квантово-механическое описание системы, и, следовательно, нам необходимо доказать согласованность теории, например, для случая, когда два наблюдателя встречаются в одном месте, чтобы обсудить результаты своих наблюдений.
Рассмотрим наиболее известный из всех мысленных экспериментов – знаменитый (или я должен сказать «печально известный»?) эксперимент с котом Шрёдингера. Представьте себе, что в полдень, в 12:00, кот помещается в закрытый ящик вместе с нейтроном и пистолетом. Когда нейтрон распадается (случайно), образующийся при распаде электрон активирует цепь, которая вызывает пистолетный выстрел, убивающий кота.
Практикующий квантовый механик – назовём его Ш. – пытается проанализировать эксперимент, написав волновую функцию – список вероятностей для различных результатов. Ш. не может учесть всю Вселенную, поэтому он ограничивает описание системы только теми объектами, которые находятся внутри ящика. Моменту полудня соответствует только одна запись: «Кот жив, нейтрон цел, пистолет заряжен». После этого Ш. проделывает некие математические манипуляции, чтобы решить уравнение и узнать, что будет дальше. Но результат его вычислений не является точным предсказанием, будет кот жив или мёртв. Результатом будет новое значение волновой функции, которая теперь состоит из двух записей: «Кот жив, нейтрон цел, пистолет заряжен» и «Кот мёртв, нейтрон распался, пистолет выстрелил». Волновая функция расщепляет ход истории на две ветви: «живую» и «мёртвую», а её численные значения являются квадратными корнями из вероятностей реализации этих двух исходов.
Ш. может открыть ящик и проверить, жив кот или нет. Если кот жив, то Ш. может смело выбросить ветвь волновой функции, приводящую к смерти кота. Эта ветвь, если продолжить её дальше во времени, будет содержать всю информацию о мире, в котором кот был застрелен, но так как Ш. обнаружил кота живым, эта информация ему больше не нужна. Существует термин для процесса исчезновения побочных ветвей волновой функции при выполнении акта наблюдения. Его называют редукцией волновой функции. Это очень удобный трюк, позволяющий физику сосредоточиться только на тех вещах, которые впоследствии могут представлять интерес. К примеру, «живая» ветвь содержит информацию, которая может заинтересовать Ш. Если он проследит эту ветвь в будущее, он сможет определить вероятность того, что пистолет впоследствии случайно выстрелит и застрелит самого Ш. (что будет возмездием за издевательство над котом). Редукция волновой функции, происходящая при каждом акте наблюдения, является ключевым моментом знаменитой копенгагенской интерпретации квантовой механики, которую отстаивал Нильс Бор.
Но редукция волновой функции не является компонентом математического аппарата квантовой механики. Это некое дополнительное математическое правило, которое ввёл Бор для описания результата наблюдения. Это волюнтаристское правило стало головной болью для нескольких поколений физиков. По большей части проблема состоит в том, что Ш. ограничивает описываемую систему только теми объектами, которые находятся в ящике, но в конце эксперимента Ш. сам становится частью системы, производя акт наблюдения. Сегодня уже нет сомнений, что последовательное описание обязательно должно включать Ш. как часть системы. Вот как оно должно выглядеть.
Волновая функция теперь описывает всё, что находится в ящике, а также фрагмент физической материи, который мы называем Ш. Первоначальная волновая функция по-прежнему состоит только из одной записи, но теперь эта запись выглядит следующим образом: «Кот жив, пистолет заряжен, нейтрон цел, Ш. ничего не знает о здоровье кота». Спустя некоторое время Ш. открывает ящик. Теперь волновая функция состоит из двух записей: «Кот жив, пистолет заряжен, нейтрон цел, Ш. знает, что кот жив» и «Кот мёртв, пистолет выстрелил, нейтрон распался, Ш. знает, что кот мёртв». Как видите, нам удалось включить Ш. в описание системы без привлечения идеи редукции волновой функции.
Но теперь предположим, что у нас появился ещё один наблюдатель – назовём его Б. Б. отсутствовал в комнате в тот момент, когда Ш. проводил своё живодёрский эксперимент. Когда Б. открывает дверь, чтобы посмотреть, что происходит в лаборатории, он видит один из двух исходов. Поскольку нет никакого смысла в отслеживании нереализованной ветви, получается, что появление Б. приводит к редукции волновой функции. Похоже, что нам не избежать этой лишней операции. Но давайте попробуем включить в волновую функцию и Б. Отправной точкой будет система, включающая всё, что находится в ящике, и два сгустка материи, называемые Ш. и Б. Начальное состояние системы теперь будет описываться так: «Кот жив, пистолет заряжен, нейтрон цел, Ш. ничего не знает о здоровье кота, и Б. ничего не знает о здоровье кота». Когда Ш. открывает ящик, волновая функция расщепляется на две ветви: «Кот жив, пистолет заряжен, нейтрон цел, Ш. знает, что кот жив, и Б. ничего не знает о здоровье кота» и «Кот мёртв, пистолет выстрелил, нейтрон распался, Ш. знает, что кот мёртв, и Б. ничего не знает о здоровье кота». Наконец, когда Б. входит в комнату, первая ветвь волновой функции принимает вид: «Кот жив, пистолет заряжен, нейтрон цел, Ш. знает, что кот жив, и Б. знает, что кот жив». Я оставлю читателю возможность самому сформулировать описание остальных ветвей. Главное, что мы сумели описать эксперимент без привлечения редукции волновой функции.
А теперь предположим, что есть ещё один наблюдатель, именуемый Э. Ничего страшного. Вы наверняка уже поняли, по какому шаблону следует действовать: единственный способ избежать редукции волновой функции – включить в квантовое описание всю наблюдаемую Вселенную, а также все ветви её волновой функции. Предлагаемая интерпретация является альтернативой прагматичному правилу Бора, требующему завершать описание любого эксперимента редукцией волновой функции.
Эвереттовский способ представления волновой функции описывает бесконечное ветвящееся дерево всевозможных исходов. Большинство физиков – последователей Бора – представляло себе ветви волновой функции как математическую фикцию, за исключением одной-единственной ветви, которая остаётся после акта наблюдения. Редукция волновой функции является полезным инструментом для отсечения ненужных ветвей, но многие физики считают это правило произвольным вмешательством внешнего наблюдателя – процедурой, не основывающейся на базовом математическом аппарате квантовой механики. Почему математика должна включать в описание все возможные ветви, если их единственная роль – быть отброшенными на последнем этапе?
По мнению сторонников многомировой интерпретации, все ветви волновой функции одинаково реальны. На каждой развилке мир ветвится на две или более альтернативные вселенные, которые продолжают вечно существовать бок о бок. В представлении Эверетта реальность постоянно ветвится, но с одной оговоркой: различные ветви никогда не взаимодействуют друг с другом после того, как они разошлись. На «живой» ветви дух мёртвого кота никогда не будет преследовать Ш. в ночных кошмарах. Правило Бора – это просто трюк, позволяющий отрезать лишние ветви, которые вполне реально существуют, несмотря на то что не оказывают в будущем никакого воздействия на наблюдателя.
Стоит отметить ещё один момент. С течением времени мы на определённом этапе истории получаем невероятно разветвлённую волновую функцию, и в её описании присутствует невообразимое количество копий каждого возможного варианта развития событий. Рассмотрим бедного Б., пока он ещё не вошёл в комнату. Волновая функция, разветвляющаяся в момент, когда Ш. открывает ящик, разделяет историю всех входящих в описание системы объектов, в том числе и Б., на две ветви, причём состояние Б. в каждой из этих ветвей одинаково. Количество ветвей, содержащих вас, читающих эту книгу, практически бесконечно. В этом контексте понятие вероятности имеет смысл только как относительная частота различных результатов. Один из результатов является более вероятным, чем другой, если он присутствует в большем количестве ветвей.
С точки зрения эксперимента различий между многомировой и копенгагенской интерпретациями нет. Никто не спорит с тем, что на практике копенгагенское правило редукции волновой функции даёт правильные вероятности экспериментальных результатов. Но эти две интерпретации глубоко различаются в отношении философского смысла этих вероятностей. Копенгагенцы придерживаются консервативного взгляда, считая, что вероятность есть мера возможности получения определённого результата при проведении большого числа повторяющихся экспериментов. Представьте себе монету. Если монета «правильная», вероятность любого исхода (орёл или решка) равна одной второй. Это означает, что если подбросить монету достаточно большое количество раз, то примерно в половине случаев она упадёт решкой, а в половине – орлом. Чем больше количество подбрасываний, тем ближе полученный результат будет к идеальному соотношению 50 на 50. Подобные рассуждения применимы и при бросании игральной кости. Каждая из граней кости при достаточно большом числе бросаний будет выпадать (с точностью до погрешности) с частотой одна шестая. Обычно никто не применяет статистику к единственному броску монеты или игральной кости. Но многомировая интерпретация делает именно это. Она имеет дело с единичными событиями способом, комичность которого особенно хорошо видна на примере подбрасывания монеты. Идея, что при подбрасывании монеты мир расщепляется на два параллельных – мир орла и мир решки, – не кажется слишком перспективной.
Почему же физиков настолько беспокоят вероятности, которыми оперирует квантовая механика, что они вынуждены обращаться к таким странным идеям, как многомировая интерпретация? Почему Эйнштейн так настойчиво утверждал, что «Бог не играет в кости»? Чтобы понять то недоумение, которое вызывает квантовая механика, полезно спросить себя: «Почему в ньютоновском мире абсолютной определённости тем не менее возникает необходимость обращаться к статистическим методам?» Ответ прост: вероятности возникают в ньютоновской физике по той простой причине, что мы почти никогда не знаем точных начальных условий эксперимента. Если бы в эксперименте с подбрасыванием монеты мы имели точную информацию о строении и движении руки экспериментатора, информацию обо всех воздушных потоках в комнате и информацию обо всех других факторах, влияющих на исход эксперимента, никакие вероятности нам бы не потребовались. Каждый бросок приводил бы к совершенно определённому результату. Вероятность – это удобный трюк, позволяющий компенсировать нашу неосведомлённость о деталях эксперимента. Вероятность не играет фундаментальной роли в законах Ньютона.
Но в квантовой механике ситуация принципиально иная. Из-за принципа неопределённости не существует способа точно предсказать результат эксперимента – принципиально не существует. Основные уравнения квантовой теории определяют эволюцию волновой функции, и ничего более. Вероятность лежит в самом фундаменте квантовой теории. Это не удобный трюк, используемый для компенсации недостатка информации. Кроме того, уравнения, которые определяют эволюцию волновой функции, не предусматривают внезапного отсечения ненужных ветвей. Редукция волновой функции – это лишь удобный трюк.
Эта проблема становится особенно острой в космологическом контексте. Обычные эксперименты типа эксперимента с двумя щелями, который я описал в главе 1, можно повторять снова и снова, как и подбрасывание монеты. Каждый фотон, который проходит через экспериментальную установку, можно рассматривать как отдельный эксперимент. Проблема состоит не в необходимости накопления огромного количества статистических данных. Она состоит в том, что мы не можем набрать нужную статистику в космическом масштабе. Вряд ли мы сумеем повторить много раз Большой взрыв, чтобы собрать статистику о результатах. По этой причине многие космологи склоняются к философии многомировой интерпретации.
Пионерская идея Картера по объединению антропного принципа с многомировой интерпретацией состояла в следующем: предположим, что волновая функция ветвится не только при описании таких простых вещей, как местоположение электрона, распад нейтрона или жизнь и смерть кота, но в каждой ветви работают различные Законы Физики. Если предположить, что все ветви одинаково реальны, то получится, что существует множество миров с различными вакуумами. На современном языке мы могли бы сказать, что каждой точке на Ландшафте соответствует своя ветвь. Всё остальное ничем не отличается от того, что я уже рассказывал ранее в этой книге, за исключением того, что вместо различных областей Мегаверсума мы будем говорить о различных вариантах реальности. Чтобы пояснить основную мысль, я приведу цитату из главы 1, а затем изменю в ней несколько слов. Исходная цитата звучит так: «Где-то в Мегаверсуме эта константа имеет такое значение, а где-то – сякое. Мы живём в одном маленьком кармане, в котором значения констант таковы, что позволяют существовать жизни нашего типа». А вот изменённая цитата: «На какой-то из ветвей волновой функции эта константа имеет такое значение, а на какой-то – сякое. Мы живём на одной отдельной ветви, где значения констант таковы, что позволяют существовать жизни нашего типа». Хотя две цитаты кажутся похожими, они несут в себе две совершенно различные идеи существования альтернативных вселенных. Похоже, что у нас есть ещё один способ достижения разнообразия вселенных, которое могло бы придать смысл антропной аргументации. Я мог бы добавить, что разные сторонники антропного принципа имеют разные мнения о том, какая из версий теории параллельных вселенных правильна. Хотите знать моё мнение? Я считаю, что оба варианта являются взаимодополняющими описаниями одной и той же сущности.
Рассмотрим ситуацию более подробно. Ранее в этой главе я описал два представления вечной инфляции, параллельное и последовательное. Параллельное представление признаёт существование гигантского Мегаверсума, наполненного неисчислимыми карманными вселенными, которые, будучи отделены друг от друга горизонтами, не взаимодействуют друг с другом. Это представление созвучно многомировой интерпретации Эверетта. А как насчёт последовательного представления?
Рассмотрим один пример. Представим сформировавшийся пузырь пространства, свойства которого определяются его положением в одной из долин Ландшафта. Для удобства дадим названия всем соседним долинам. Пусть долина, в которой находится пузырь, называется Центральной долиной. К востоку и западу от неё лежат Восточная и Западная долины, каждая – несколько ниже Центральной. С Западной долины можно добраться до ещё двух близлежащих долин, одну из которых мы назовём Шангри Ла, а другую – Долиной смерти. Долина смерти на самом деле не долина, а довольно плоское плато, расположенное на нулевой высоте. Восточная долина также имеет несколько соседей, до которых легко добраться, но мы не будем озадачиваться их названиями.
Представьте, что вы находитесь в Центральной долине, в то время как ваша карманная вселенная находится в стадии инфляционного раздувания. Из-за того, что поблизости находятся долины, лежащие на более низком уровне, вакуум вашей долины является метастабильным: в любой момент в нём может возникнуть пузырь, который поглотит вас. Итак, вы осматриваетесь и изучаете свойства окружающего вас пространства. Вы можете обнаружить, что всё ещё находитесь в Центральной долине, или понять, что уже совершили переход в Восточную или Западную долину. Долина, которую вы в данный момент населяете, определяется случайным образом согласно законам квантовой механики, во многом таким же образом, как квантовая механика определяет судьбу кота Шрёдингера.
Предположим теперь, что вы обнаружили себя в Западной долине. С тем же успехом вы могли бы отбросить ветвь вашей волновой функции, которая соответствует Восточной долине. Она не имеет никакого значения для вашего будущего. Спустя время, если вам повезёт, вас может поглотить пузырь, свойства пространства которого определяются благоприятной для жизни долиной Шангри Ла. Но вы с таким же успехом можете оказаться и в Долине смерти. На каждом перекрёстке Бор и его копенгагенская банда подскажут вам, как рассчитать вероятность для каждого исхода. Затем они поручат вам произвести редукцию волновой функции, для того чтобы избавиться от сверхнормативного багажа тех ветвей, которые не соответствуют исходу вашего эксперимента. Вот это и есть последовательное представление.
Моё мнение вам, должно быть, уже очевидно. Последовательное представление – когда вы постоянно остаётесь в пределах горизонта вашей карманной вселенной, наблюдая события и избавляясь от ненужного багажа, – это боровская интерпретации квантовой механики. Параллельное представление Мегаверсума, наполненного множеством невзаимодействующих карманных вселенных, соответствует интерпретации Эверетта. Я нахожу в этом соответствии приятную логичность. Возможно, в конце концов мы обнаружим, что квантовая механика имеет смысл только в контексте ветвящегося Мегаверсума и что Мегаверсум имеет смысл только как ветвящаяся реальность эвереттовской интерпретации.
Независимо от того, говорим мы на языке Мегаверсума или многомировой интерпретации, параллельное представление совместно с гигантским ландшафтом теории струн даёт нам два элемента, которые способны превратить антропный принцип из глупой тавтологии в мощный инструмент познания. Но параллельное представление основывается на предположении о реальности существования областей пространства и времени, которые всегда находятся вне досягаемости для любых мыслимых способов наблюдений. У некоторых людей это вызывает чувство тревоги. Меня это тоже беспокоит. Если безбрежное море карманных вселенных действительно находится за недостижимыми горизонтами, то параллельное представление и вправду видится больше метафизикой, чем наукой. Следующая глава будет целиком посвящена горизонтам и вопросу, действительно ли они являются непреодолимыми барьерами.
Назад: Два взгляда на историю
Дальше: Глава 12. Битва при чёрной дыре

Влад (Киев)
>> частицы, состоящие из s-, c-, b– и t-кварков, не играют никакой роли в обычной физике и химии и представляют интерес исключительно для специалистов в области высокоэнергетической физики Ага, если бы физики не страдали этим НЕВЕРНЫМ предположением, что внутри черных дыр - якобы некая точечная сингулярность (точка нулевого размера и ЯКОБЫ бесконечной плотности) - вы бы БЫСТРО нашли применение всем этим массивным короткоживущим частицам ;) Имеющие уши - наверное меня услышали :)
Влад (Киев)
P.S. А так мне ОЧЕНЬ понравился стиль изложения для Фейнмановских диаграмм - просто, понятно, ИНТЕРЕСНО. Автору большущий респект, увлекаюсь физикой элементарных частиц уже очень давно (более двадцати лет), и мне такой стиль изложения очень зашел. Кстати, по поводу "позитрона - как электрона, движущегося вспять во времени" - я больше скажу, все античастицы являются точными зеркальными отображениями своих частиц. Где-то в официальных источниках это указывается.