Приложение B
Золотое сечение
Разделите отрезок прямой на две части, так, чтобы отношение меньшей части к большей было бы равно отношению большей части ко всему отрезку. Для простоты будем считать, что меньшая часть имеет в длину 1 фут, а большая — x футов. Очевидно, что длина всего отрезка в этом случае x + 1. Придав отношению алгебраический вид, получим, что отношение меньшей части к большей равно 1 / x, а отношение большей части ко всему отрезку — x / (1 + x).
Поскольку отношение меньшей части к большей равно отношению большей части к целому отрезку, мы можем приравнять отношения друг другу, что дает уравнение:
x / (1 + x) = 1 / x.
Мы стремимся решить это уравнение в отношении x, что и есть золотое сечение. Первый шаг — умножить обе части уравнения на x, что дает
x2 / (1 + x) = 1.
Умножив потом обе части на (1 + x), получаем
x2 = 1 + x.
Вычтя 1 + x из обеих частей уравнения, получаем
x2 — x — 1 = 0.
Теперь можно решить квадратное уравнение:
х = 1±√(1 + 4) / 2.
Мы имеем два решения, однако только первое из них, примерно равное 1,618, является положительным числом, только оно имело смысл для греков. Таким образом, золотое сечение приблизительно равно 1,618.