Глава 7. Эволюция галактик
Основным препятствием для решения проблемы возникновения крупномасштабной структуры, возникновения галактик, является незнание начальных условий.
По-видимому, единственной возможностью выяснить здесь истину является способ, аналогичный тому, к которому прибегли для решения проблемы первых секунд с начала расширения. Надо сделать разные предположения о начальных возмущениях, проанализировать их следствия и сравнить с наблюдениями.
И. Д. Новиков.
Эволюция Вселенной
Ясной безлунной ночью каждый может видеть Млечный Путь – светящуюся туманную полосу, протянувшуюся поперек неба. Обширнейшее поле галактических объектов Млечного пути содержит миллиарды звезд. Темная полоса, проходящая посередине Млечного Пути и разделяющая звезды, состоит из межзвездной пыли, поглощающей видимый свет. А первым, кто рассмотрел ее в телескоп и обнаружил, что она состоит из множества неярких звезд, был Галилей.
В середине XVIII века астрономы предположили, что большинство наблюдаемых звезд образуют единую дискообразную структуру. И полвека спустя эта гипотеза была подтверждена Уильямом Гершелем, составившим каталог огромного числа звезд и расстояний до них. К началу прошлого века общепринятым стало мнение, что эта звездная полоса – часть единственной во Вселенной галактики, которая «приютила» миллиарды звезд, включая и наше Солнце. Сейчас предполагается, что в видимой части Вселенной находится около полусотни миллиардов галактик.
Чем глубже копает археолог, тем более древние горизонты открываются перед ним; чем дальше смотрят астрономы, тем более юную Вселенную они видят. Счастье ученых в том, что свет от далеких объектов идет к нам очень долго – миллиарды лет. Желая узнать, как рождались галактики, они должны исследовать наиболее далекие. Много лет эта работа давала обескураживающие результаты: удаляясь в прошлое на миллиарды лет, ученые не обнаруживали ничего нового в облике галактик и в прошлом видели такие же звездные системы. Но вот группа астрономов, наблюдая мощные радиоисточники, с которыми, как правило, связаны крупные галактики, обнаружила далекие системы звезд в процессе формирования.
В таких галактиках них нет газа и пыли для формирования новых звезд, а старые звезды распределены более равномерно, придавая галактикам эллипсоидальную (яйцевидную) форму.
Богатство форм звездных систем может быть объяснено разнообразием условий, в каких они рождались. По современным взглядам, на ранней стадии развития Вселенная была заполнена разреженным газом, который распался затем из-за гравитационной неустойчивости на сгущения, а сгущения в последующем – на отдельные облака различной массы. Одни из облаков имели вращательный момент и центральное сгущение, из них впоследствии образовались спиральные галактики, а другие практически не вращались, они положили начало эллиптическим галактикам, облака же без значительного центрального сгущения, но все же обладавшие вращательным моментом, дали начало неправильным галактикам типа Магеллановых Облаков.
Размеры галактик простираются от карликовых с десятками миллионов звезд до массивных – с тысячами миллиардов звезд. Сферические или эллипсоидные галактики имеют красноватый цвет, создаваемый их состарившимися обитателями.
Весьма распространены спиральные (или дисковые) галактики. Их плоские диски погружены в разряженное слабосветящееся сферическое облако слабых старых звезд и газа – гало. На диске заметен спиральный узор из двух или нескольких закрученных в одну сторону рукавов, выходящих иногда из центра галактики. Эффектные спиральные рукава выделяются за счет сверкающих, горячих, юных голубых звезд.
Но как образуются спиральные рукава? На этот счет существуют различные взгляды. В последние десятилетия особенно популярны были теории спиральных волн плотности, бегущих по звездному диску как по поверхности воды.
Бывает, что рукавов больше и форма их не столь симметрична: они делятся на отдельные ветви, сливаются друг с другом и распадаются на части, подобно связке сосисок.
А порою диск галактики напоминает кофейную пенку, в рисунке которой с трудом угадываются обрывки спиральных рукавов.
Линзовидные галактики внешне гораздо менее привлекательны и фотогеничны. Существует и множество совершенно бесформенных клочковатых галактик, получивших название неправильных. Около половины вещества в них составляет межзвездный газ.
Полная энергия, которую испускает «нормальная» галактика, представляет сумму излучений от всех ее звезд. Но есть такие галактики, которые в радио-, инфракрасной, ультрафиолетовой и рентгеновской областях электромагнитного спектра испускают энергии больше, чем следует. Такие галактики называются «активными». В чем же источник этой дополнительной энергии? Ответом на этот вопрос стало открытие черных дыр – объектов, в которых материя сжата настолько плотно, что не выпускает за свои пределы никакого излучения.
Если черная дыра с массой от миллиона до миллиарда солнечных масс находится в центре галактики с большой плотностью вещества, это вещество «засасывается» дырой. При этом гравитационные силы настолько велики, что заставляют падающее вещество излучать, превращая галактику в активную. Именно это излучение и выдает ученым присутствие черных дыр.
До сих пор детально изучены только окрестности Солнца в радиусе около 5 тысяч световых лет при общем размере Галактики около 100 тысяч световых лет. Полной карты галактического диска пока также не существует. Давняя мечта астрономов, которая, вероятно, сбудется не скоро – взглянуть на Галактику снаружи, увидеть рисунок ее спирального диска, заглянуть в ядро, изучить все интересные объекты, скрытые за темными облаками. Поскольку нет надежды получить фото нашей звездной системы от коллег из туманности Андромеды, радиоастрономам приходится самим расшифровывать радиокарты и восстанавливать рисунок спирального узора Млечного Пути.
По современным радиокартам не удается подсчитать даже количество спиральных рукавов Галактики. Совмещая различные модели с картой солнечных окрестностей, исследователи получают от двух до двенадцати рукавов. Не ясно даже, расположено ли Солнце в межрукавном пространстве или в одном из второстепенных рукавов. Проблема эта имеет прямое отношение к будущему Земли: с точки зрения биосферы условия в рукавах и между ними весьма различаются).
Камертон Хаббла
Современную классификацию галактик предложил в тридцатых годах прошлого века Эдвин Хаббл. На левом конце этой последовательности расположены эллиптические галактики – сферические звездные системы. Далее она тянется к плоским спиральным галактикам. Отдельно стоят неправильные галактики вроде двух самых заметных спутников Млечного Пути, видимых на небе Южного полушария, – Большого и Малого Магеллановых Облаков. При переходе к спиральным галактикам последовательность раздваивается, давая начало самостоятельной ветви спиральных галактик с перемычками – гигантскими звездными образованиями, пересекающими ядро галактики, от концов которых отходят спиральные ветви. По причине раздвоенности эту классификацию часто называют «камертоном Хаббла».
Расстояние от Солнца до центра Галактики служит масштабом всех прочих расстояний в нашей звездной системе и во многих случаях – за ее пределами. Для галактической астрономии эта величина так же важна, как для внегалактической астрономии и космологии важна постоянная Хаббла. И вот что удивительно: несмотря на огромные затраты сил астрономы вот уже более полувека не могут измерить величины обеих этих констант с точностью ближе 50 процентов. А не зная данной величины – метрической единицы галактической астрономии, мы теряем возможность точно определять другие параметры Галактики, например, расстояния до далеких звезд, скоплений и туманностей, скорость вращения Галактики и даже ее массу. А как, скажем, разобраться в природе галактического ядра, не зная расстояния до него? Например, существует очень серьезная гипотеза о том, что в центре ядра находится гигантская черная дыра.
Столетие назад астрономы считали нашу Галактику всей Вселенной, расстояние до центра Млечного Пути принималось «главной мировой осью» до центра мира. Затем нашу Галактику признали одной из множества подобных, но ее размеры и положение в ней Солнца продолжают интересовать астрономов. Ведь Млечный Путь – уникальная звездная система, изучаемая изнутри в трех измерениях, а не в виде плоских изображений прочих галактик и звездных скоплений.
Обычно движение звезд вокруг центра Галактики сравнивают с обращением планет вокруг Солнца, но это не совсем точная аналогия: галактическая орбита звезды значительно сложнее, чем движение планеты по простому эллипсу. Это потому, что Галактика устроена гораздо сложнее Солнечной системы. Солнце можно уподобить дрессировщику, водящему лошадь (то есть планету) по кругу на привязи: она строго подчинена его влиянию, поскольку конкурентов нет. Но, выпустив лошадь в толпу людей или лошадей, мы бы увидели совсем иную картину. Звезда, движущаяся в Галактике, испытывает влияние множества близких и далеких звезд. И если далекие действуют более или менее сообща, принуждая ее обращаться вокруг центра звездной системы, то соседи так и норовят «толкнуть»: случайные сближения с ними заметно меняют движение звезды.
Еще сильнее действует сближение со звездными коллективами – скоплениями, содержащими сотни и тысячи звезд, а также с массивными межзвездными облаками. Такие встречи нарушают регулярное движение звезды и постепенно изменяют ее орбиту. Поскольку наиболее тесно населены центральные области Галактики, то следует ожидать, что звезды вроде нашего Солнца со временем должны отодвигаться на периферию. Предполагается, что Солнце за время своей жизни действительно удалилось от центра Галактики почти на 30 процентов начального расстояния. Это выяснилось по химическому составу Солнца, который отличается от состава соседних звезд, зато очень похож на тот, который имеют звезды, расположенные ближе к центру Галактики.
До недавних пор теория звездообразования традиционно изучала небольшие галактические структуры – туманности и звездные скопления – размером в несколько световых лет. С другой стороны, теория спиральной структуры Галактик имела дело с масштабами в десятки тысяч световых лет. У истоков теории формирования звезд стоял сам Ньютон с идеей о гравитационном скручивании космического вещества. Спустя три столетия смелая гипотеза Ньютона подтвердилась почти буквально: наш мир действительно был некогда заполнен однородным веществом, оно действительно разделилось на части и сгустилось в гигантские светящиеся массы – звезды и галактики.
Вот только распределены эти массы в пространстве далеко не хаотично, как предполагал великий физик, а организованы в удивительные структуры – звездные комплексы, содержащие не только отдельные молодые звезды, но и скопления и облака межзвездного газа, из которого все это образуется. Как выяснилось, звездные комплексы служат базовой ячейкой звездообразования в галактиках.
Одним из самых загадочных вопросов физики космоса является происхождение нашей родной Галактики Млечный Путь. До сих пор эта проблема настолько сложна, что у исследователей даже нет согласия по принципиальному пункту, что было движущим процессом: распад более крупного облака или слипание из множества мелких частей, некоторые из которых еще сопровождает галактику в виде спутников, таких как Большое и Малое Магеллановы Облака.
Есть ли надежда разгадать процесс, происходивший многие миллиарды лет назад?
Астрономы, подобно палеонтологам, никогда не теряют надежду заглянуть в прошлое и найти там ответы на многие проблемы современности. Так, ученые считают, что основой для возникновения звездных островов послужили гигантские облака газа и пыли. Подобные зародыши-протогалактики состояли в основном из легчайших газов – водорода и гелия. Это первичное вещество в свою очередь распадалось на отдельные сгущения, сжимавшиеся к своим центрам. Из них возникли первые поколения звезд и шаровые звездные скопления. Они образовали сферические звездные подсистемы в галактиках. Рой быстрых звезд и шаровых скоплений, существующий вокруг главного тела нашей современной Галактики, имеет, по-видимому, именно такую природу. После того как в галактиках образовались звезды, дальнейшее их развитие пошло по разным направлениям в зависимости от массы и вращательного момента.
В настоящее время в нашей Галактике различают несколько подсистем, отличающихся возрастом входящих в них объектов, количеством тяжелых элементов, характером движения звезд и распределением их в пространстве.
Близкими родственниками квазаров, очевидно, являются Сейфертовские галактики и радиогалактики. Сейфертовскими называются галактики, в видимой области излучения похожие на обычные спиральные, но с очень активными ядрами, мощность излучения которых к тому же сильно меняется со временем, указывая на происходящие там грандиозные процессы. Радиогалактики, отличающиеся мощным излучением в радиодиапазоне, огромные и эллиптические. Мощности Сейфертовских и радиогалактик также обеспечиваются сверхмассивными черными дырами, находящимися в их центрах. Не исключено, что все это разнообразие типов – просто определенные этапы эволюции, которые наблюдаются во Вселенной сейчас.
Появляется все больше доказательств того, что главными движущими силами эволюции галактик и причиной их разнообразия являются взаимодействие и столкновение друг с другом. При этом не следует думать, что столкновение двух галактик – это смертный бой между входящими в них звездами. Вероятность столкновения двух звезд очень мала, потому что размеры их крайне незначительны по сравнению со средним расстоянием между ними. Но межзвездное пространство заполнено газом и пылью, и именно эти компоненты взаимодействуют, когда галактики сталкиваются.
Гравитационное взаимодействие приводит к нарушению структуры газопылевой среды и к перекачиванию вещества из одной галактики в другую.
Трение, возникающее между газом в сталкивающихся галактиках, порождает ударные волны, которые могут вызвать образование новых звезд. Новые звезды в первые несколько миллионов лет своей жизни имеют весьма необычную светимость и голубизну, а потому обнаружение их является наиболее очевидным признаком произошедшего столкновения.
Эти процессы сильно влияют на структуру галактик. Например, две спиральные могут слиться и сформировать эллиптическую. Большие галактики поглощают маленькие и еще вырастают. Все эти процессы длятся миллионы и миллиарды лет (не так уж много по астрономическим масштабам времени), но людям, чтобы увидеть динамику, нужно наблюдать несколько пар взаимодействующих галактик в различные моменты их слияния и затем составить последовательность изображений во времени.
Множество далеких, а следовательно, очень старых галактик носят следы разрушения, что свидетельствует о том, что в ранней Вселенной столкновения были скорее правилом, чем исключением. Наш Млечный Путь, очевидно, тоже является результатом слияния небольших галактик. Существует карликовая галактика, которая вливается в нашу прямо сейчас, и еще восемь близко расположенных крошечных галактик вскоре сольются с нами.
Сравнивая количество звезд разных поколений у большого числа однотипных галактик, можно установить возможные пути их эволюции. У более старых наблюдается истощение запасов межзвездного газа и снижение в связи с этим темпов образования и общего количества звезд новых поколений. Зато в них много белых карликов – сверхплотных звезд малых размеров, представляющих собой одну из последних стадий эволюции звезд. В этом и заключается старение галактик.
Эволюция галактик в скоплениях и группах показывает, что при столкновениях их протяженные газовые короны должны «обдираться» и рассеиваться. Кроме того, массивные члены скоплений, двигаясь среди остальных, своим тяготением увлекают соседей. Иногда находящиеся в центре скопления массивные галактики не только «обдирают» газовые короны проходящих через них галактик, но захватывают и звезды «космического гостя». Предполагается, в частности, что многие галактики, обладающие массивными гало, образовали их таким «каннибальским» путем.
По существующим расчетам, через 3 млрд лет своеобразным «каннибалом» станет и наша Галактика: она поглотит приближающееся Большое Магелланово Облако.