Книга: Взрыв мироздания
Назад: Глава 5. На просторах мультивселенной
Дальше: Глава 7. Эволюция галактик

Глава 6. Гравитационный прибой

…Как следует из специальной теории относительности, ничто не может двигаться со скоростью, превышающей световую. Размышляя над этой проблемой, Эйнштейн представил себе луч света, искривляющийся при прохождении у края Солнца. Материя как-то изгибает пространство, и другая материя должна двигаться в таком пространстве «естественно» – так, как мы это наблюдаем. Он решил, что наиболее естественным был бы кратчайший путь между двумя заданными точками пространства. Иными словами, Солнце искривляет пространство вокруг себя, и планеты движутся эллиптическими орбитами, но в искривленном пространстве они представляют собой прямые линии.
Далеко не все соглашались с этими странными идеями Эйнштейна.
Б. Паркер.
Мечта Эйнштейна: В поисках единой теории строения Вселенной
Со времен античных натурфилософов-метафизиков пространство считалось математической абстракцией, всегда и всюду одинаковым, не зависящим от заполняющих его тел, и никак не проявляющим себя в материальном мире. В этом идеализированном пространстве более двух тысячелетий успешно царствовала геометрия Евклида. Первым, кто высказал мысль о возможности построения других геометрий, столь же последовательных и непротиворечивых, как и евклидова, был выдающийся математик Николай Лобачевский. К сожалению, его удивительные работы настолько опередили свою эпоху, что не нашли понимания даже у выдающихся математиков того времени.
Лобачевский не просто первым создал теорию неевклидовой геометрии, но и поставил вопрос о реальной геометрии нашего мира. Какова она – плоская евклидова или же искривленная неевклидова? Он попытался практически ответить на этот вопрос, проведя ряд астрономических измерений суммы углов треугольников, составленных из далеких звезд. Однако отсутствие разработанной методологии подобных наблюдений и их низкая точность не позволили получить какой-либо результат.
Работы Лобачевского и независимые исследования одаренного венгерского математика Яноша Бойяи послужили надежной основой для всех последующих концепций искривленного пространства, в том числе созданных немцем Бернхардом Риманом. Этот теоретик создал математический аппарат для анализа самых разнообразных пространств. В его статьях пространство представало и изогнутым, и скрученным с разрывами и склейками, и даже многомерным. Теория Римана во многом вдохновляла работы математика и литератора Льюиса Кэрролла.
Именно с помощью неевклидовой геометрии теория релятивистской гравитации – общая теория относительности – описывает наш мир.
Оригинальный математический аппарат неевклидовой геометрии позволил Эйнштейну далеко продвинуться в понимании сущности всемирного тяготения. Именно таким образом великий теоретик пришел к парадоксальной идее, составившей основу второй части релятивистской концепции: связать силу тяготения с кривизной нашего пространства. Надо заметить, что основные уравнения общей теории относительности впервые вывел Давид Гильберт. Правда, он пришел к сущности своих знаменитых уравнений, составивших «пространство Гильберта» своим собственным путем в результате исследований, которые повлияли на современную математику не меньше, чем идеи теории относительности на физику. Любопытно и другое: Гильберт и Эйнштейн посвятили свою жизнь поискам наиболее общих принципов организации мироздания. Причем, если Гильберт искал единые основы мира математических идей, то жизненным идеалом Эйнштейна было создание теории некоего единого поля. Из этой «теории всего» можно было бы как частный случай вывести существование всех известных частиц и сил. Эта «чаша Грааля» современной физики до сих пор остается недостижимой, но ее поиски ведутся весьма интенсивно, причем как физиками-теоретиками, так и экспериментаторами.
Не так давно научный мир потрясла очередная сенсация. Речь идет об открытии следов реликтовых гравитационных волн, оставшихся от эпохи Большого взрыва. Сенсационное открытие состоялось в рамках международной программы Гарвард-Смитсоновского центра астрофизики Background Imaging of Cosmic Extragalactic Polarization (BICEP) в самой необычной обсерватории Земли, расположенной на антарктической станции «Амундсен-Скотт». Именно там природа создала подходящие условия для наблюдений, крайне иссушив и проморозив атмосферу.
Почему же это открытие вызвало такой ажиотаж среди астрономов и физиков?
Гравитационные волны… Эти загадочные порождения поля всемирного тяготения возникли столетие назад на использованном почтовом конверте. Именно так небрежно великий Эйнштейн записывал гениальные идеи, случайно пришедшие в голову. Когда создатель теории относительности обнаружил формулу для гравитационных волн, никто не сомневался, что вскоре экспериментаторы откроют новые удивительные свойства пространства – времени. Однако шло время, но крепкий орешек «гравитационного прибоя Вселенной» никак не поддавался усилиям ученых. Правда, в мировых СМИ изредка появлялись заявления, объявлявшие об очередном открытии. Увы! Все они так и не нашли подтверждения. Сюда же следует отнести и несостоявшиеся сенсации о различных проявлениях левитации, антигравитации и создании всяческих «гравицап»…
Между тем количество попыток открыть «дрожь пространственно-временной матрицы» отнюдь не уменьшается, скорее даже наоборот: возникло целое полуофициальное направление экспериментальной астрономии – гравитационно-волновая астрофизика. И хотя эта область науки еще мало освоена, ее исследователи уверенно делают первые решительные шаги, опираясь на многие косвенные данные о гравитационном колебании космоса. К сожалению, сами принципы детектирования волн тяготения требуют создания дорогостоящих циклопических сооружений и систем, на что энтузиасты гравитационного поиска приводят исторические примеры развития фундаментальных областей физики, изменившие лик цивилизации. Действительно, ведь когда-то даже самые светлые энциклопедические умы не осмеливались предсказать, что забавные опыты с «янтарной электрической субстанцией» в конечном итоге приведут к XIX веку пара и электричества, не говоря уже о последующих столетиях атомных электростанций, лазеров и солнечных батарей.
Когда-то выдающийся французский математик и натурфилософ Пьер-Симон Лаплас, отстаивая жесткую связь между всеми элементами мироздания, заметил, что даже взмах руки влияет на движение звезд. Современный физик перефразировал бы: взмахните рукой – и по всей Вселенной побегут гравитационные волны!
Теоретически это так, но их регистрация действительно составляет труднейшую техническую проблему, ведь гравитационные «приливы» и «отливы» на 40 порядков (!) уступают тем же электромагнитным волнам. Продолжая рассчитывать мощность оптимальной гравитационной волны, которая бы заставила ощутимо вибрировать приемник наподобие пустой железнодорожной алюминиевой цистерны, мы получим околосветовую звездную карусель. Жаль, но подобные небесные феномены астрономы пока еще не открыли…

 

Модель гравитационных волн от двойной звездной системы

 

Задумываясь над природой волн гравитации, вспомним, что, согласно общей теории относительности, тяготение возникает в результате искривления окружающего нас пространства-времени. Если представить пространство в виде упругой резиновой пленки с ямками от массивных «шариков» звезд, то их колебания вызовут вибрацию всей пленки. Образно это можно назвать волновой рябью пространства-времени.
Итак, даже простейшие «резинопленочные» модели показывают, что нас невидимо раскачивает гравитационный прибой. Правда, не всякое перемещение звезд может вызвать гравитационное излучение. Например, для испускания волн гравитации не подойдет вращение по симметричной орбите. В этом случае центростремительное ускорение строго симметрично, его гравитационное поле остается однородным, так что волны гравитации возникнуть не могут. А вот если взять коромысло с двумя очень серьезными массами и раскрутить в точке равновесия, то гравитационное поле такой бинарной (двойной) системы начнет изменяться пропорционально частоте вращения, и от коромысла во все стороны побежит пространственно-временная рябь волн тяготения.
Для наблюдателя гравитационная волна представляет собой возмущение приливных сил, т. е. точно таких же сил притяжения Луны или Солнца, которые заставляют вспучиваться водную поверхность Земли, образуя периодические приливы и отливы. Простейшее приспособление, которое могло бы зафиксировать таинственную гравитационную рябь пространства – времени – обыкновенный груз на пружинном подвесе, свободно колеблющийся с некоторой собственной частотой. Если при этом она совпадет с частотой гравитационной волны, возникнет резонанс. В качестве пробных грузов на пружинке чаще всего используют громадные многометровые алюминиевые цилиндры толщиной около метра. В другом варианте устанавливают массивные зеркала, колебания которых измеряют с помощью лазерных интерферометров.
Вообще говоря, шумный ажиотаж вокруг поиска гравитационных волн поднялся в конце шестидесятых годов прошлого века, когда американский физик Джозеф Вебер опубликовал сенсационные данные, свидетельствующие о существовании космических волн тяготения. Вебер слыл авторитетом в своей области, поэтому научный мир воспринял его сообщение с полной серьезностью, а в обиход вошло выражение «волны Вебера».
Однако вскоре наступило разочарование, ведь другим ученым так и не удалось достичь значимых результатов.
Сегодня многие творческие коллективы инженеров и физиков успешно проектируют новые системы датчиков гравитации, например, на основе лазерных интерферометров. Если на такую систему накатит гравитационная волна, то под ее воздействием начнет меняться длина пути луча. Сначала она станет короче в одном направлении и длиннее в другом, затем возникнет противоположная ситуация. Подобные лазерные интерферометры обладают феноменальной чувствительностью и могут регистрировать волны в широком частотном диапазоне.
Но ученые не остановятся на достигнутом и собираются создать космическую систему из лазерных интерферометров для регистрации гравитационных волн. Речь идет о международном проекте, получившем название LISA, который предполагает запуск космической флотилии из нескольких гравитационных лабораторий, распределенных на дистанции в несколько миллионов километров друг от друга. Так могут быть получены важнейшие данные по космологическим гравитационным волнам, возникшим при рождении нашей Вселенной в пучинах Большого взрыва.
Впрочем, надежды гравитационно-волновой астрономии не связаны исключительно с космосом. В различных лабораториях строятся криогенные детекторы, например, в виде металлических сфер метрового диаметра, охлаждаемые практически до температуры абсолютного нуля. Предполагается, что на высоких частотах такие детекторы могут превзойти по чувствительности самые совершенные лазерные установки.
Между тем Метагалактику не зря иронично называют «лабораторией для бедных». Порой космос действительно предоставляет ученым уникальные возможности для исследования процессов, недоступных ни в каких лабораториях. Примером может служить радиопульсары нейтронных звезд. Характерные размеры нейтронной звезды составляют десятки километров, а средняя плотность приближается к плотности атомных ядер, при этом кубический сантиметр весит тысячи тонн. Массы всех известных нейтронных звезд близки к массе Солнца. Скорость вращения нейтронной звезды может быть очень высокой и превышать 100 тысяч километров в секунду. При такой плотности нейтронные звезды обладают чудовищной напряженностью поля тяготения. Поэтому, если подобное радиопульсары будут вращаться со скоростью в тысячи оборотов за секунду, то потеряют осевую симметрию, и возникшее несимметричное тело будет излучать волны гравитации. Еще более мощным источником гравитационных колебаний должна быть двойная система нейтронных звезд. Астрономам встречаются такие феномены, делающие сотни оборотов в секунду при скорости движения приближающейся к трети световой!

 

Проект LISA

 

Этот совместный эксперимент НАСА и ЕКА Laser Interferometer Space Antenna находится на проектной стадии, старт планируется на 2020 год. Измерения будут проводиться лазерными интерферометрами при помощи космических аппаратов, расположенных в вершинах треугольника. Когда гравитационная волна исказит пространство-время между двумя зондами, можно будет измерить относительные сдвиги фазы лазерного луча.

 

Из-за крошечного размера нейтронные звезды очень слабо видны, даже в большие телескопы, но во многих случаях наблюдаются как источники рентгеновского излучения в тесных двойных системах звезд. По современным представлениям, большинство нейтронных звезд образуется при взрывах сверхновых. Наряду с черными дырами нейтронные звезды являются конечной стадией эволюции звезд большой массы. Чаще всего гравитационные волны испускают двойные звездные системы, часто встречающиеся в Метагалактике. С помощью космических гравитационных телескопов-интерферометров ученые надеются зарегистрировать волны тяготения, возникшие при поглощении черными дырами обыкновенных звезд.
Однако рекордсменами в испускании гравитационных волн должны быть системы из черных дыр. Массы таких систем могут превышать массы тех же нейтронных звезд в миллиарды раз. Особенно интересные эффекты возникают в случае быстро вращающихся черных дыр.
Мощнейшим источником колебаний пространства–времени могли бы быть множественные системы из сверхмассивных черных дыр, скапливающихся в ядрах сильно взаимодействующих галактик. Когда-нибудь и наш Млечный Путь столкнется с соседней туманностью Андромеды. Тогда центральные черные дыры образуют единую систему и начнут сближаться, расходуя энергию на гравитационное излучение.
Может быть, когда-нибудь астрофизики найдут способы фиксации коротких очень мощных всплесков гравитационных волн, возникающих и при вспышках сверхновых звезд.
Но самым интересным источником гравитационного излучения должны быть космологический фон реликтовых гравитационных волн. Космологические гравитационные волны испускаются в эпоху ранней Вселенной хаотически движущимися неоднородностями вещества. Это единственный вид излучения, способный донести до нас информацию о первых секундах существования Вселенной.
Разыскивая волны пространства – времени, астрофизики вынуждены постоянно бороться с множеством помех, вызванных тепловыми движениями, звуковыми и сейсмическими колебаниями. Поэтому гравитационные обсерватории, как правило, располагают в необычных, а иногда и экзотических местах: в глубоких заброшенных шахтах или наоборот – на горных вершинах и на ледниковом щите Антарктиды.
Существующие детекторы уже вплотную подошли к интересной для астрофизиков области параметров. Каков же все-таки смысл в поиске гравитационных волн, для чего их можно «использовать»? Можно представить, что если бы журналисты спросили в свое время у создателей квантовой теории, какая в будущем будет польза от квантовой механики, то вряд ли они предвосхитили открытие транзисторов и оптических квантовых генераторов-лазеров. Но прошли десятилетия и появилась прикладная квантовая электроника, квантовая оптика и квантовая радиофизика. Очень трудно предсказать конкретные приложения фундаментальной теории, но ее будущий вклад в технику и инженерную физику несомненен.
Назад: Глава 5. На просторах мультивселенной
Дальше: Глава 7. Эволюция галактик