Лекция Римана 1854 года дождалась публикации лишь в 1868-м – через два года после его смерти и через год после книги Бальцера, пролившей свет на работы Бойяи и Лобачевского. Последствия наработок Римана мало-помалу показали, что Евклид совершил ошибки нескольких разновидностей: он сделал множество негласных допущений, другие толком не доформулировал, а кроме того, попытался определить больше, чем было возможно.
Ныне мы видим огрехи евклидовой аргументации. Проще всего критиковать Евклида за искусственное разграничение между постулатами и «общими понятиями». Глубже лежит наша современная попытка аксиоматизировать любые допущения и ничто не принимать за истину всего лишь на основании «очевидности» или «здравого смысла». Это на самом деле вполне новомодный подход – победа Гаусса над Кантом, – и критиковать Евклида за то, что он не произвел этот рывок, затруднительно.
Еще одна структурная проблема евклидовой системы – непризнание необходимости в неопределимых понятиях. Представим словарное определение пространства как «безграничной емкости или места, распространяющегося во всех направлениях». Осмысленно ли это определение, или оно лишь подменяет расплывчатым термином «место» искомый термин «пространство»? Если у нас нет уверенности, что мы отчетливо понимаем значение «места», можем поглядеть в словаре и его определение. Словарь утверждает, что «место» есть «часть пространства, занятая тем или иным объектом». Эти два слова – «место» и «пространство» – частенько определяются друг через друга.
Хоть и придется повозиться, но поскольку любое слово в словаре определяется другими, обнаружится, что такая подмена происходит с любым определением. Единственный способ избежать логического круга – допустить существование в конечном языке неких словарно неопределимых понятий. Ныне мы понимаем, что и математические системы обязаны включать подобные неопределимые понятия, и стараться включать минимальное их число, необходимое для того, чтобы система оставалась осмысленной.
С неопределимыми понятиями следует обращаться бережно, поскольку легко впасть в заблуждение, вложив смысл в понятие, сначала не доказав этого, даже если этот смысл кажется очевидным из физической реальности. Сабит совершил эту ошибку, приняв за «очевидное» замечание о том, что линия, равноудаленная от прямой, есть прямая. Как мы уже убедились, ничто в системе Евклида, кроме самого постулата параллельности, нам этого не гарантирует. Применяя неопределимые понятия, мы должны отбросить любые коннотации, навязываемые нам словоупотреблением. Перефразируя великого гёттингенского математика Давида Гильберта [Хилберт], заметим, что непременно должна быть возможность заменить «точки», «прямые» и «окружности» на «мужчин», «женщин» и «пивные кружки». Тогда, математически говоря, эти понятия должны насытиться смыслом из самих утверждений – например, первых трех постулатов Евклида:
1. От всякого мужчины до всякого мужчины можно провести женщину.
2. Ограниченную женщину можно непрерывно продолжать по прямой.
3. Из всякого мужчины всякой пивной кружкой может быть описан круг.
Евклид делал и другие ошибки – сугубо логические, и они привели его к доказательствам теорем, в которых некоторые стадии оказались необоснованными. Например, в самом первом предложении он заявляет, что равносторонний треугольник может быть построен на любом отрезке прямой. В доказательстве он строит два круга, центры каждого из которых находятся на концах отрезка, и у каждого радиус равен длине этого отрезка. Далее он берет точку, в которой эти окружности пересекаются. Хотя рисование окружностей нам эту точку ясно покажет, Евклид не дает никаких формальных гарантий существования этой точки. По сути, его системе не достает постулата, обещающего непрерывность линий или окружностей, т. е. что в них нет разрывов. Кроме того, он не сумел распознать и другие допущения, применяемые им в доказательствах, например, что точки и прямые существуют, что не все точки лежат на одной прямой и что на любой прямой есть как минимум две точки.
В другом доказательстве он неявно допустил, что, если три точки лежат на одной прямой, мы можем определять одну из них как лежащую между двумя другими. Ничто в его постулатах или определениях не дает нам доказать это. На деле это допущение – своего рода требование прямизны: оно не допускает кривых, поскольку такие линии могут образовывать замкнутую петлю – к примеру, круг, – и тогда ни одну точку на ней нельзя считать лежащей между двумя другими.
Некоторые возражения доказательствам Евклида смотрятся как придирки, однако невинные очевидные допущения без всяких видимых последствий могут иногда равняться серьезным теоретическим утверждениям. К примеру, допущение существования всего одного треугольника, чья сумма углов равна 180°, позволяет доказать, что у всех треугольников сумма углов составляет 180°, а также позволяет доказать постулат параллельности.
В 1871 году прусский математик Феликс Клейн [Кляйн] показал, как устранить очевидное противоречие в сферической модели эллиптического пространства Римана, усовершенствовав попутно и Евклида. Вскоре после этого математики вроде Бельтрами и Пуанкаре предложили свои новые модели и подходы к геометрии. В 1894 году итальянский логик Джузеппе Пеано выдвинул новый набор аксиом для определения евклидовой геометрии. В 1899 году Гильберт, не знакомый с работами Пеано, выдал свою версию формулировки геометрии – в наиболее распространенном ныне виде.
Гильберт полностью посвятил себя прояснению фундаментальных основ геометрии (а впоследствии помог развить общую теорию относительности Эйнштейна). Он многократно пересматривал свои формулировки – до самой смерти в 1943 году. Первый шаг его метода – превращение неявных допущений Евклида в развернутые утверждения. В свою систему Гильберт – по крайней мере в седьмом издании своего труда в 1930 году, – включил восемь не определенных понятий и увеличил число аксиом Евклида с десяти (включая общие утверждения) до двадцати. Аксиомы Гильберта разделили на четыре группы. Они включают в себя не опознанные Евклидом допущения вроде тех, что мы уже рассмотрели:
Аксиома I-3: Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.
Аксиома II-3: Среди любых трех точек, лежащих на одной прямой, существует не более одной точки, лежащей между двумя другими.
Гильберт и другие ученые доказали, что все свойства евклидова пространства можно вывести из этих аксиом.
Революция искривленного пространства глубоко повлияла на все области математики. Примерно со времен Евклида и до работ Гаусса и Римана, обнаруженных посмертно, математика была по большей части дисциплиной прагматической. Евклидова структура воспринималась как описание физического пространства. Математика в некотором смысле была разновидностью физики. Вопросы непротиворечивости математических теорий казались порожними – доказательства следовало искать в физическом мире. Но к 1900 году математики осознали, что аксиомы – спорные утверждения, они суть всего лишь основа системы, следствия которой необходимо изучать в некоем подобии умозрительной игры. Внезапно математические пространства превратились в абстрактные логические конструкты. Природа физического пространства стала самостоятельным предметом, вопросом физики, а не математики.
Перед математиками встал вопрос совсем нового свойства: доказательство логической непротиворечивости их построений. Понятие доказательства, переместившееся за последние века развития расчетных методик на заднее сиденье, вновь стало главенствующим. Состоятельна ли геометрия Евклида? Самый лобовой способ доказать непротиворечивость логической системы – доказать все мыслимые теоремы и продемонстрировать, что ни одна не противоречит другой. Поскольку существует бесконечное количество возможных теорем, такой подход годится лишь тем, кто планирует жить вечно. Гильберт опробовал иную тактику. Как и Декарт с Риманом, Гильберт определили точки в пространстве через числа. В случае с двухмерным пространством, например, каждая точка соответствует паре действительных чисел. Превратив точки в числа, Гильберт смог перевести все фундаментальные геометрические понятия и аксиомы в арифметические. Так доказательство любой геометрической теоремы переводится на язык арифметических или алгебраических действий с координатами. А поскольку любое геометрическое доказательство следует логически из аксиом, арифметическая интерпретация должна вытекать из аксиом, облеченных в арифметическую форму. Если в геометрии возникает противоречие, оно проявится и при переводе на язык арифметики, а если арифметика непротиворечива, стало быть, стройны и гильбертовы формулировки евклидовой геометрии (для неевклидовых геометрий эти действия тоже были позднее проделаны). Яснее некуда? Хотя в итоге Гильберту и не удалось доказать абсолютную непротиворечивость геометрии, доказать относительную непротиворечивость он все-таки смог.
Из-за бесконечности числа возможных теорем абсолютная непротиворечивость геометрии, арифметики и, если уж на то пошло, всей математики – дело куда более трудоемкое. Чтобы разобраться и с этим, математики изобрели абстрактную теорию объектов, имеющую с ними дело на самом общем уровне, независимо от всяких особенностей того, чем они на самом деле являются. Эта теория, которую ныне преподают в большинстве общеобразовательных школ, называется теорией множеств.
И все-таки даже самая простая теория множеств сталкивается с путаными парадоксами: один такой был опубликован в 1908 году в малоизвестном журнале «Abhandlung der Friesschen Schule» Куртом Греллингом и Леонардом Нелсоном. Греллинг и Нелсон рассматривают множество слов. Возьмем, во-первых, множество всех прилагательных, описывающих сами слова. Например, слово «двадцатиоднобуквенный» само, да, состоит из двадцати одной буквы, а прилагательное «многосложный» – многосложно. В пику этому множеству есть множество всех прилагательных, которые себя не описывают. На ум почему-то приходят слова типа «хорошо написанный», «поразительный» и «другу рекомендуемый» (если в этой книге и есть хоть одно предложение, которое стоит вызубрить, – вот оно). Последнее множество называется гетерологическим – вероятно, оттого, что «гетерологический» само по себе многосложно.
Красота? Но есть, однако, закавыка: а «гетерологический» – гетерологическое слово? Если да, значит, оно себя описывает, следовательно, оно таковым не является. Раз оно таковым не является, значит, оно себя не описывает, а следовательно – является. Вот что математики называют парадоксом; для не-математика это всего лишь знакомая безвыигрышная ситуация (понятие, придуманное математиками, дай им бог здоровья).
В 1903 году Бетран Расселл, без пяти минут лорд Расселл, попытался навести порядок, предположив в своей скромной книге под названием «Принципы математики», что вся математика должна выводиться из логики. Совместно со своим коллегой по Оксфорду Алфредом Нортом Уайтхедом он попытался добиться такой выводимости – или хотя бы показать, как это сделать, – в трехтомном магнум-опусе, изданном между 1910 и 1913 годами. Вероятно, потому, что этот труд был серьезнее публикации 1903 года, он получил латинское название «Principia Mathematica». В «Principia» Расселл и Уайтхед заявили, что свели всю математику к единой системе основных аксиом, из которых можно доказать все теоремы математики, подобно евклидовой системе применительно к геометрии. В их системе даже такие фундаментальные понятия как числа рассматривались как эмпирические конструкты, которые необходимо обосновывать более глубокими аксиоматическими структурами.
Гильберт отнесся к этим заявлениям скептически. Он подначил математиков строго доказать успешность программы Расселла и Уайтхеда. Этот вопрос отложили насовсем в 1931 году шокирующей теоремой Курта Гёделя: он доказал, что в системе достаточной сложности – в теории чисел, к примеру, – должно существовать утверждение, чью истинность или ложность невозможно доказать. Это уничтожает утверждение Расселла и Уайтхеда: они не только не показали, как именно все математические теоремы можно вывести из логики, но и в принципе не могли бы этого сделать!
Математики продолжают работать над фундаментом своей науки, но со времен Гёделя никому еще не удалось заметно изменить общую картину. По-прежнему не существует общепринятого подхода к тому, что начал Евклид: к аксиомам математики.
Между тем сила математики – не в одних лишь умозрительных играх, и это ни в чем не очевидно так, как в применении Эйнштейном свежеоткрытых типов математических пространств к тому, в котором мы живем. Хоть и серьезно перемоделированная, геометрия продолжила быть окном видения нашей Вселенной.