Георг Риман родился в 1826 году в маленькой деревне Брезеленц, неподалеку от мест, где появился на свет Гаусс. В семье Риманов было шестеро детей. Двум его сестрам, да и ему самому, выпала судьба умереть молодыми. Его мать скончалась, когда он был еще мал. До десяти лет его обучал дома отец, лютеранский пастор. Риман больше всего любил историю, особенно – польского национального движения. Серьезный юный Георг явно не производил впечатления души компании – он ею и не был. Напротив – выказывал патологическую застенчивость и скромность. И гениальность. Приверженцы конспирологических теорий предположили бы, имея в виду Гаусса и Римана, что в начале XIX века под немецким Гамбургом некая высшая инопланетная раса основала колонию и подбросила двум нищим местным семьям гениальных младенцев. И хотя никаких анекдотов о гениальном детстве Римана, в отличие от детства Гаусса, не сохранилось, похоже, Риман уже тогда был чуточку умнее, чем положено всем нам.
Когда Риману исполнилось девятнадцать, директор его гимназии, человек по имени Шмальфус, дал ему кое-что занимательное – книгу Адриена Мари Лежандра «Théorie des nombres» («Теория чисел»), что математически эквивалентно выдаче юному Риману штанги для установления мирового рекорда по жиму от груди стоя. Штанга эта весила 859 страниц – обширных, плотных, набитых от края до края абстрактной теорией. Грыжа гарантирована: лишь чемпион мог бы справиться с таким весом – при этом обильно потея и кряхтя. Для Римана же эта книга оказалась суперлегким весом, судя по всему, – захваты вающим чтением, не требующим никакой сосредоточенности. Он вернул том через шесть дней с комментарием вроде: «Приятно было почитать». Через несколько месяцев Риман сдал экзамен по содержанию книги – с отличным результатом. Позднее Георг внесет свой фундаментальный вклад в теорию чисел.
В 1846 году все еще девятнадцатилетний Риман поступил в Университет Гёттингена, где преподавал Гаусс. Риман начал студентом-теологом – вероятно, рассчитывая молиться за угнетенных поляков. Однако вскоре переключился на предмет своей первой любви – математику. Недолго побыв в Берлине, в 1849 году Риман вернулся в Гёттинген, чтобы завершить работу над диссертацией. В 1851 году он сдал свой труд на суд в том числе и Гаусса, который к тому времени уже стал легендой и был столь же легендарно строг со своими студентами.
Реакция Гаусса на работу Римана оказалась такой, какую он демонстрировал в редких случаях, когда его впечатляли чьи-то математические успехи. Гаусс писал, что Риман выказал «творческий, деятельный, поистине математический ум и… великолепно плодотворное воображение», а также добавил, что он, Гаусс, произвел сходную работу, но не опубликовал. (Посмертное исследование трудов Гаусса показало, что все подобные его заявления ложью не были.) Риман пришел в восторг. В 1853 году ему исполнилось двадцать семь и он двигался к финишу на длинном пути к преподаванию в Гёттингене. В Германии тех времен подобная академическая позиция приносила не скромные деньги, какие платят за нее ныне. Она не приносила никаких денег. Многим из нас такое положение дел видится несколько ущербным. Риман же алкал этого звания – ступеньки к профессорству. А студенты, бывало, не скупились на чаевые.
Оставалось преодолеть последнее препятствие – прочитать пробную лекцию. Риман представил факультету на выбор три темы. Такова была традиция – выбирать тему лекции нового преподавателя. На всякий случай Риман хорошенько подготовился к первой и второй. Гаусс, баловник эдакий, выбрал третью.
Третьим вариантом Риман предложил тему, которая, очевидно, его интересовала, но он в ней разбирался неважно. Большинство академических ученых, проходя собеседование на работу и специализируясь на политике Люксембурга, не станут предлагать тему пробного выступления «О шриланкийских рептилиях», даже если она стоит третьей в их списке интересов. Когда Гаусс, к тому времени уже тяжело больной и уведомленный врачом о близкой смерти, выбрал третью тему Римана, тот, возможно, спросил себя: «О чем я вообще думал?» Эта самая третья тема звучала так: «Uber die Hypothesen welche der Geometrie zu grunde liegen» («О гипотезе, лежащей в основе геометрии»). Формулируя эту тему, он знал, как дорога она была Гауссу практически всю его жизнь.
Дальнейшее состояние Римана понятно: несколько недель он переживал что-то вроде нервного срыва – пялился в стену, парализованный свалившимся бременем. Наконец, с приходом весны, он как-то собрался и за семь недель склепал лекцию. Прочитал он ее 10 июня 1854 года. Это был тот редкий случай в истории, когда точная дата и подробности профессионального собеседования сохранились для потомков.
Риман представил свою лекцию в контексте дифференциальной геометрии, сосредоточившись на свойствах бесконечно малых областей поверхности, нежели на ее общих геометрических свойствах. По сути, Риман неевклидову геометрию как таковую ни разу и не помянул. Но последствия его работы были очевидны: Риман объяснил, каким образом сферу можно интерпретировать как двухмерное эллиптическое пространство.
Подобно Пуанкаре, Риман дал свою интерпретацию понятий «точка», «прямая» и «плоскость». В качестве плоскости он выбрал поверхность сферы. Его точки, как и у Пуанкаре, были местоположениями – в том же смысле, в каком Декарт имел в виду пары чисел, они же координаты (по сути – широта и долгота той или иной точки). Линиями Римана оказались большие круги – геодезические линии сферы.
Как и для модели Пуанкаре, необходимо было подтвердить, что модель Римана допускает непротиворечивые интерпретации постулатов. Сейчас самое время вспомнить, что уже доказана невозможность существования эллиптического пространства. Разумеется, обнаружилось, что в модели Римана имеются кое-какие нестыковки. Мало создать пространство на основе новой версии постулата параллельности – риманово пространство противоречило существующим версиям и других постулатов. Например, возьмем второй. Евклид писал:
2. Ограниченную прямую можно непрерывно продолжать по прямой.
Применим ли этот постулат к отрезкам больших кругов сферы? До Римана второй постулат интерпретировали в том значении, что должен существовать отрезок сколь угодно большой длины. Но у большого круга есть предел – длина окружности, в 2π раз больше радиуса этой самой сферы.
Даже в математике иногда полезно нарушать законы. Риман стал Розой Паркс, отказавшейся пересесть в хвост автобуса: он поставил под вопрос не неправедное, но неоправданное. Он постановил, что второй постулат описывает не существование сколь угодно длинных отрезков, а лишь гарантирует, что у прямых нет конца, а это верно для больших кругов. Математический Верховный суд – сообщество математиков, – услышав это, почесал в затылках. Каковы последствия новой интерпретации закона юным Риманом? Не противоречит ли это другим законам? Можно ли сделать его не противоречащим?
Вторым постулатом нестыковки не исчерпались. Риманово понятие прямой привело к другим затруднениям, которым Риман не имел объяснений. Например, большие круги нарушают допущение, что две прямые могут пересекаться лишь в одной точке. Как и линии долгот, пересекающиеся на обоих полюсах, все большие круги пересекаются в двух точках на противоположных сторонах сферы.
Понятие промежуточности тоже оказалось непросто интерпретировать. Евклид основывал это понятие на первом постулате:
1. От всякой точки до всякой точки можно провести прямую.
Чтобы найти точку между двумя другими, Евклид рисовал отрезок, соединяющий эти две точки. Любая точка (отличная от концевых) на этом отрезке находится «между» двумя концевыми. Каверза модели Римана заключается в том, что любые две точки можно соединить по окружности двумя способами. Индонезия – она между экваториальной Африкой и экваториальной Южной Америкой? Чтобы ответить на этот вопрос, можно провести линию вдоль экватора, соединяющую два континента, и проверить, проходит ли она через Индонезию. Но в рамках римановой модели можно попасть из Южной Америки в Африку, отправившись хоть на запад, хоть на восток. Один маршрут проходит через Индонезию, а другой – нет.
Из-за этой неопределенности все евклидовы доказательства применительно к земному шару, связанные с построением отрезков между точками, грешат негодными формулировками. А это приводит к причудливым последствиям. Например, представьте сферическую вселенную Римана с радиусом в 40, а не 4000 миль, как у Земли. В один погожий день глянете вы вперед – и увидите собственный зад. А этот самый зад – он перед вами или позади вас? Или возьмем обруч. Его радиус – 1 метр. Вот крутите вы обруч на талии и спрашиваете: внутри вы обруча или нет? Вроде бы очевидно, что да. Теперь мысленно увеличьте обруч – до размеров гоночной трассы, миля в ширину. Для обруча великоват, но по сравнению с радиусом планеты в 4000 миль – мизер. Стоя в центре, вы все еще можете с уверенностью утверждать, что вы – внутри. А теперь увеличьте обруч до радиуса в 4000 миль. Обруч опоясал планету, как экватор, и тут-то вдруг ваше положение по отношению к обручу становится спорным: вы внутри или снаружи? А если еще больше увеличить радиус обруча, чтобы его окружность раздалась от вас во все стороны, – и тут он вдруг на самом деле схлопывается. В конце концов он окажется тем же, каким мы впервые его представили, – в метр радиусом, но его центр теперь находится в точке на другой стороне мира от вас. И вроде бы вы получаетесь снаружи его. Как можно переместиться изнутри наружу, всего лишь увеличивая размеры обруча? С низложением понятия «между» понятия «сзади» и «спереди», «внутри» и «снаружи» более не просты. Таковы противоречия наивного эллиптического пространства.
Избавиться от этих затруднений можно лишь путем аккуратного переопределения многих понятий. Как обычно, Гаусс предвидел и это. В 1832 году он писал Вольфгангу Бойяи: «В полном своем развитии смысл слов вроде “между” должен основываться на ясных понятиях, которые можно добыть, но я их пока не обрел». В этом Риман ему тоже не помог. Но, сосредоточившись в основном на малых областях поверхности, Риман глобальными противоречиями вроде тех, что мы только что обсудили, похоже, не интересовался и не боялся их. И, невзирая на эти открытые вопросы, лекция Римана считается одним из шедевров математики. Но все же из-за этих неувязок она не озарила вселенную математики подобно фотонной торпеде. Гаусс вскоре после этой лекции умер. Риман продолжил разбираться в вопросах местной структуры, нежели широкомасштабной геометрии пространства, и его работа не имела серьезного прижизненного научного влияния.
В 1857 году в тридцать один год Риман в конце концов стал ассистентом профессора – с унылым жалованьем, приблизительно эквивалентным тремстам долларов в год. На это ученый жил сам и поддерживал трех своих сестер, однако самая младшая, Мари, вскоре умерла. В 1859 году умер Дирихле, заменивший Гаусса на его посту, и Риман сам занял место Гаусса. Три года спустя, в тридцать шесть, он женился. На следующий год у него родилась дочка. Теперь уже с приличным достатком и молодой семьей жизнь Римана вроде бы начала налаживаться. Но, увы, ненадолго. Он подхватил плеврит, переросший в туберкулез, который и добил его – как и его сестер в юные годы – всего в тридцать девять.
Работа Римана в дифференциальной геометрии стала краеугольным камнем общей теории относительности Эйнштейна. Не прояви Риман неосмотрительность, включив в свой список тем геометрию, и не будь Гаусс таким настырным, выбрав эту тему, математический аппарат Эйнштейна, потребный для его революции в физике, не существовал бы. Но еще до начала переворота труды Римана по эллиптическим пространствам произвели не менее мощное действие на мир математики. Необходимость видоизменять не только постулат параллельности, но и прочие, оказалась равносильна перетиранию прядей в веревке – и веревка вскоре лопнула. И лишь тогда математики осознали, что на этой веревке висела не только геометрия, но и вся математика.