Глава 3
Да будет свет!
Когда нашей Вселенной была всего доля секунды от роду, а температура ее составляла безжалостные миллиарды градусов тепла и сияние от нее было просто нестерпимым, занималась она в основном расширением. С каждым последующим мгновением Вселенная становилась все шире, охватывая все больше космического пространства (что не очень просто вообразить, но факты говорят сами за себя). Чем дальше расширялась Вселенная, тем прохладнее и темнее она становилась. На протяжении сотни тысячелетий вещество и энергия сосуществовали бок о бок в чем-то вроде густого бульона, в котором электроны стремительно и без устали разносили по уголкам Вселенной фотоны.
Если бы тогда вам захотелось заглянуть «в глубь» Вселенной, вы бы ничего не увидели. Те фотоны, что пытались бы добраться до сетчатки вашего глаза, за несколько наносекунд или даже пикосекунд до достижения цели отскакивали бы от электронов, мельтешащих перед вашим лицом, в обратном направлении. Куда бы вы ни посмотрели, вы увидели бы только мерцающий туман, и все окружающие вас предметы — сияющие, пронизанные светом, красновато-белые — были бы почти такими же яркими, как поверхность Солнца.
Расширение Вселенной продолжалось, и энергия фотонов постепенно падала. В конце концов, когда Вселенной исполнилось около 380 тысяч лет, ее температура упала ниже 3000 градусов по шкале Кельвина. Тогда протоны и ядра гелия смогли окончательно притянуть к себе электроны, создав, таким образом, первые атомы в нашей Вселенной. В предыдущие эпохи ее существования каждому фотону хватало энергии на то, чтобы разрушать формирующиеся атомы, но расширение Вселенной положило этому конец. Свободных электронов тоже становилось все меньше, и теперь фотоны могли носиться по всей Вселенной, ни с чем не сталкиваясь. Тогда-то Вселенная и стала прозрачной: туман рассеялся, и гипотетическому наблюдателю открылось фоновое космическое излучение.
Это излучение можно наблюдать и сегодня — мы называем его реликтовым излучением. По сути, оно представляет собой остатки света той сверкающей раскаленной Вселенной первых лет ее существования. Свойства этой вездесущей массы фотонов во многом соответствуют как волнам, так и частицам. Длина волны каждого фотона равняется расстоянию между двумя соседними «гребнями» его волнообразной траектории — его можно было бы измерить обычной линейкой, если бы довелось заполучить в руки фотон. В вакууме все фотоны движутся с одинаковой скоростью — около 299 800 км/с (собственно, это и есть скорость света), так что фотоны с меньшей длиной волны характеризуются большим количеством волнообразных движений, совершаемых за одну секунду. Такие фотоны успевают совершить больше волнообразных движений за заданный промежуток времени, а значит, отличаются большей частотой. Частота каждого фотона — прямой показатель его «энергичности»: чем она выше, тем больше в нем содержится энергии.
Охлаждение продолжалось, и фотоны утрачивали все больше энергии в пользу все расширяющейся Вселенной. Фотоны, рожденные в частях спектра, приходящихся на рентгеновское и гамма-излучение, превратились в ультрафиолетовый свет и в инфракрасные фотоны. Длина их волн увеличивалась, и они становились все прохладнее и энергичнее, но фотонами от этого быть не переставали. Сегодня, через 13,7 миллиарда лет после рождения Вселенной, фотоны реликтового излучения сместились вниз в рамках спектра, превратившись в микроволновое, или сверхвысокочастотное (СВЧ), излучение.
Вот почему астрофизики называют его космическим микроволновым фоном, хотя термин «реликтовое излучение» все же пользуется большей популярностью. Пройдет еще сотня миллиардов лет, Вселенная будет еще больше и прохладнее, и астрофизики будущего назовут наше реликтовое излучение космическим радиоволновым фоном.
Чем шире Вселенная, тем ниже ее температура. Все это соответствует доступной нам физике. Если отдельные части Вселенной все больше удаляются друг от друга, значит, длина волн фотонов реликтового излучения должна увеличиваться: космос растягивает эти волны вдоль эластичной канвы времени и пространства. Из-за того что энергия каждого фотона обратно пропорциональна длине его волны, все свободно перемещающиеся фотоны теряют до половины своей изначальной энергии с каждым двукратным увеличением Вселенной в размере.
Все объекты, температура которых превышает абсолютный нуль, излучают фотоны, приходящиеся на все части спектра. Данное излучение всегда где-то и в какой-то момент достигает своего максимума. Так, максимальная отдача энергии, или выработка, обычной домашней электрической лампочки лежит в инфракрасной части спектра. Это можно заметить по ощущению тепла на коже при приближении к ней источника такого света. Конечно же, лампочки выделяют немалое количество и видимого света (иначе мы бы их вряд ли покупали). Получается, излучение лампы можно не только видеть, но и ощущать — осязать.
В случае с фоновым излучением наибольшая отдача энергии происходит при длине волны около 1 мм — это середина микроволновой части спектра. Источник помех, которые можно услышать во время разговора по рации, — это внешнее микроволновое излучение, небольшая доля которого идет непосредственно от реликтового излучения. Остальные «помехи» приходят с Солнца, от мобильных телефонов, радаров полицейских нарядов и др. Сила реликтового излучения достигает своего максимума в микроволновом спектре, но оно также частично состоит из радиоволн (именно это и позволяет им «вмешиваться» в радиосигналы с Земли) и ничтожного количества фотонов, обладающих большей энергией, чем СВЧ-волны.
Американский физик украинского происхождения Георгий Гамов и его коллеги предсказали существование реликтового излучения в 1940-х годах, а в 1948 году представили свои выкладки в полноценной статье. Известные на тот момент физические законы использовались в ней, чтобы определить те странные условия, в которых существовала ранняя Вселенная. Их идеи были основаны на вышедшей в 1927 году работе бельгийского астронома и иезуитского священника Жоржа Эдуарда Леметра, который сегодня считается отцом теории Большого взрыва. Однако примерную температуру космического фона — реликтового излучения — первыми предположили два американских физика, ранее работавшие с Гамовым, Ральф Альфер и Роберт Герман.
Альферу, Гамову и Герману пришла в голову относительно простая мысль — мы с вами уже ее озвучивали: вся канва пространства и времени вчера была меньше, чем сегодня, а раз она была меньше, значит, исходя из фундаментальных основ физики, она была горячее. Физики повернули стрелки часов назад и попытались вообразить эпоху, когда Вселенная была настолько горячей, что все ее атомные ядра были сами по себе: от столкновений с фотонами электроны разлетались во все стороны, не имея возможности прикрепиться к чему бы то ни было. В таких условиях, предположили Альфер и Герман, фотоны не могли бы беспрепятственно путешествовать по Вселенной, как сегодня. Их сегодняшнее свободное перемещение возможно только потому, что в свое время Вселенная достаточно охладилась, чтобы позволить электронам прибиться к атомным ядрам и занять свои позиции на их орбитах. Так были сформированы полноценные атомы, и свет смог перемещаться, не встречая препятствий на своем пути.
Гамов высказал уверенное предположение, что ранняя Вселенная была существенно горячее сегодняшней, но именно Альфер и Герман первыми подсчитали текущую ее температуру: 5 градусов по шкале Кельвина. Да, их подсчет оказался неверным — сегодня мы знаем, что фактическая температура реликтового излучения составляет 2,73 градуса по шкале Кельвина. Но это не умаляет того факта, что эти трое ученых пришли к верному выводу об устройстве мира в столь древнюю космическую эпоху — и это достижение не менее важно, чем любое другое в истории науки. Взять за основу базовые закономерности физики, сидя в уютной лаборатории, и выявить с их помощью крупнейший комплекс данных, когда-либо измеренных, — получить кривую температурной истории Вселенной, — если это не сногсшибательно, то тогда вообще неясно, что можно считать таковым. Профессор Джон Ричард Готт III, астрофизик Принстонского университета, дал следующую оценку этому успеху в своей книге «Путешествия во времени в эйнштейновской Вселенной»:
«Предсказать существование излучения и затем предположить значение его температуры ошибившись менее чем в два раза, — это замечательное достижение: это как если бы вы предсказали, что летающая тарелка диаметром 50 футов приземлится на газон у Белого дома, и затем стали свидетелем того, как именно туда прилетает и садится 27-футовая тарелка».
Когда Гамов, Альфер и Герман озвучили свои предположения, физики все еще не имели на руках точной истории зарождения Вселенной. В 1948 году, когда увидела свет работа Альфера и Германа, в Англии также вышли две научных статьи о теории «стационарной Вселенной». Одна из них была написана математиком Германом Бонди и астрофизиком Томасом Голдом, а другая — космологом Фредом Хойлом. Согласно теории стационарной Вселенной, последняя, хоть и расширяется, всегда выглядела и выглядит одинаково. Надо признать, эта гипотеза весьма привлекательна в своей простоте. Но так как Вселенная все же расширяется, а стационарная Вселенная не могла бы вчера оказаться более горячей или более плотной, чем сегодня, сценарий Бонди, Голда и Хойла предполагает, что она постоянно «пополнятся» новым веществом как раз с нужной частотой для того, чтобы плотность бесконечно расширяющегося космоса не менялась. В противовес этому теория Большого взрыва (такой «кличкой» ее презрительно наградил Хойл, не зная, что она приживется) подразумевает, что все вещество, имеющееся сегодня во Вселенной, появилось разом. Некоторые находят в этой идее определенное утешение. Обратите внимание: теория стационарной Вселенной просто отодвигает в неопределенное прошлое сам вопрос о ее возникновении как таковом — уж очень удобная позиция тех, кто предпочел бы вообще не касаться этой колючей темы.
Высказанное предположение о реликтовом излучении стало неким предупредительным выстрелом в стан поклонников теории стационарной Вселенной. Его существование явно доказало бы, что когда-то Вселенная была совсем другой — гораздо меньше и горячее, чем сегодня. Соответственно, первые прямые улики, говорящие о реликтовом излучении, вогнали первые несколько гвоздей в крышку гроба стационарной теории (хотя Фред Хойл так никогда до конца и не принял факта существования реликтового излучения, подрывающего его элегантную теорию, и до самой смерти пытался найти ему альтернативное объяснение). В 1964 году реликтовое излучение было по счастливому стечению обстоятельств обнаружено радиофизиками Арно Пензиасом и Робертом Уилсоном в лабораториях компании «Белл Телефон» в Мюррей-Хилл, штат Нью-Джерси. Чуть более десятилетия спустя Пензиас и Уилсон получат Нобелевскую премию за свою невероятную удачу и кропотливую работу.
Что же привело Пензиаса и Уилсона в нобелевские лауреаты? В начале 1960-х все физики были знакомы с микроволновым излучением, но почти никому не удавалось обнаружить наиболее слабые сигналы в микроволновой части спектра. В те дни большинство беспроводных способов коммуникации (рации, детекторы и др.) работало на радиоволнах, а их длина превышает длину СВЧ-волн. Ученым требовалось устройство, способное обнаружить волну более короткой длины, то есть была нужна более чувствительная антенна, которая могла такой сигнал уловить. В лабораториях «Белл Телефон» имелась одна огромная антенна в форме рога (или воронки), которая могла улавливать микроволновые сигналы не хуже, чем любой аналогичный аппарат на Земле.
Если вы соберетесь отправить получить какой бы то ни было сигнал, вам не захочется, чтобы его нарушали другие сигналы. Пензиас и Уилсон пытались создать «Белл Телефон» новый коммуникационный канал, поэтому они хотели точно определить, какой объем фонового шума будет портить им сигнал — неважно, откуда бы он исходил: от Солнца, из центра галактики, от наземных источников. И они приступили к весьма стандартному, очень важному и совершенно невинному процессу измерения, по итогам которого должны были понять, насколько это вообще легко — улавливать микроволновое излучение. Да, Пензиас и Уилсон обладали определенными знаниями из области астрономии, но они не были космологами: эта пара физиков-техников просто хотела исследовать СВЧ-волны, понятия не имея о предсказаниях Гамова, Альфера и Германа. И уж чего они точно не собирались искать и обнаруживать, так это космическое микроволновое (оно же реликтовое) излучение.
Они провели запланированные исследования и скорректировали полученные данные, учтя все известные им источники помех. Однако в сигнале присутствовал фоновый шум, избавиться от которого не получалось, как бы они ни старались. Казалось, этот шум шел одновременно отовсюду, и его уровень оставался неизменным. Тогда они заглянули в свой огромный рог. Там гнездились голуби, из-за чего весь рупор и его ближайший радиус были покрыты «белым диэлектрическим веществом» (а попросту, голубиным пометом). Видимо, Пензиас и Уилсон уже были на грани отчаяния, ибо они задались вопросом: может ли помет быть причиной непропадающего фонового шума? Они все тщательно очистили, и, надо признать, шум слегка уменьшился, но избавиться от него полностью так и не удалось. В 1965 году они опубликовали в «Астрофизическом журнале» научную статью, в которой назвали эту неразрешимую загадку «повышенной температурой антенны»; назвать ее «астрономическим открытием века» им просто не пришло в голову.
Пока Пензиас и Уилсон отскребали с рупора антенны птичий помет, команда физиков Принстонского университета во главе с Робертом Генри Дикке строила детектор, предназначенный специально того, чтобы обнаружить то самое реликтовое излучение, о котором говорили Гамов, Альфер и Герман. Правда, профессора не располагали такими ресурсами, как сотрудники «Белл Телефон», поэтому работа у них продвигалась медленнее. Стоило Дикке и его коллегам услышать о полученных Пензиасом и Уилсоном результатах, как стало ясно: их обогнали. Принстонская команда прекрасно знала, что это за «повышенная температура антенны». Все вписывалось в теорию: температура, тот факт, что сигнал приходил равномерно и со всех сторон и не менялся в зависимости от вращения Земли (времени суток) или ее расположения на орбите Солнца (времени года).
Принять подобную трактовку есть несколько причин. Фотонам нужно время на то, чтобы добраться до нас с вами из далеких уголков космоса, поэтому получается, что, глядя в космос, мы на самом деле смотрим в далекое прошлое. Это значит, что, если бы некие разумные обитатели одной далекой-далекой галактики измерили бы для своих нужд температуру реликтового излучения задолго до того, как это удалось сделать нам, они получили бы значение выше 2,73 градуса по шкале Кельвина, потому что жили бы намного раньше, когда Вселенная была моложе, компактнее и горячее, чем сегодня.
Проверить это смелое утверждение легко! Оказывается, соединение углерода и азота под названием циан (с ним особенно хорошо знакомы смертники американской судебной системы — это активный ингредиент ядовитого газа) приходит в возбуждение под воздействием СВЧ-излучения. Температура микроволнового излучения выше, чем реликтового, поэтому микроволновое излучение приводит молекулу циана в большее возбуждение. Таким образом, соединения циана можно использовать в качестве космического термометра. Обозреваемые нами с большого расстояния (а значит, передающие привет из более молодых галактик) молекулы циана купаются в более теплых реликтовых лучах, чем посчастливилось циану в галактике Млечный Путь. Другими словами, получается, что те, другие галактики с точки зрения циана живут более насыщенной жизнью. И ведь так и есть! Обозримый спектр циана в далеких галактиках демонстрирует микроволновое излучение именно той температуры, какую ожидалось бы увидеть и в нашей Вселенной в более ранний период ее существования.
Поверьте: выдумать такое просто невозможно.
Реликтовое излучение — это не просто прямое свидетельство более молодой и горячей Вселенной, оно оказывает астрофизикам (а значит, и теории Большого взрыва) гораздо более важную услугу. Оказывается, те фотоны, что входят в состав реликтового излучения, достигают нас с вами с огромным багажом информации о состоянии космоса как до, так и после обретения им прозрачности. Мы уже отмечали, что, пока с момента Большого взрыва не прошло примерно 380 тысяч лет, Вселенная была непрозрачной, и увидеть, как вещество обретает форму, было невозможно — даже если усесться в первом ряду этого космического кинотеатра. Прежде чем кто-нибудь смог бы где-нибудь увидеть что-нибудь стоящее, фотонам предстояло обрести возможность перемещаться беспрепятственно, пересекая Вселенную в любом направлении. Когда настало подходящее время, каждый фотон начал свое путешествие сквозь космос и не останавливался, пока не столкнулся с «первым и последним» в его жизни электроном. Все больше и больше фотонов прорывалось к дальним уголкам Вселенной, не встречая на своем пути ни одного электрона (потому что последние постепенно прикрепились к атомным ядрам). Там им предстояло создать растущий щит из фотонов, астрофизики называют его поверхностью последнего рассеяния. Этот щит, на формирование которого ушло примерно 100 тысяч лет, отмечает собой эпоху, в которую родились практически все атомы существующей сегодня Вселенной.
К тому времени вещество в крупных регионах Вселенной уже начинало понемногу объединяться. В местах его скопления возрастала и гравитация, вследствие чего вещества становилось еще больше. В таких регионах начали формироваться галактические суперкластеры, в то время как остальные регионы оставались относительно пустыми. Последние фотоны, оттолкнувшиеся от каких-либо электронов в пределах таких регионов скопления вещества, приобретали новый, чуть более холодный спектр по мере того, как покидали все увеличивающееся гравитационное силовое поле, которое частично забирало себе их энергию.
Реликтовое излучение действительно позволяет обнаружить места, в которых температура чуть выше или чуть ниже среднего значения; разница, как правило, не составляет больше одной стотысячной градуса. Такие теплые и прохладные участки отмечают собой наиболее рано сформировавшиеся скопления вещества. Мы знаем, как вещество выглядит сегодня, потому что можем наблюдать за галактиками, их скоплениями и сверхскоплениями. Чтобы понять, как образовались эти космические системы, мы прощупываем реликтовое излучение — реликвию далекого прошлого, которая до сих пор наполняет собой Вселенную. Анализ распределения реликтового излучения — это что-то вроде космической френологии: мы считываем бугорки на «черепе» молодой Вселенной и по ним определяем поведение не только Вселенной-младенца, но и Вселенной-взрослого.
Дополняя общую картину другими наблюдениями локальных и удаленных уголков Вселенной, астрономы могут составить представление о самых разных фундаментальных свойствах реликтового излучения. Сравнивая распределение размеров и температур чуть более теплых холодных его областей, к примеру, мы можем прикинуть силу гравитации в более ранние периоды существования Вселенной, а значит, и то, как быстро вещество скапливалось в тех иных регионах. Отсюда мы можем вычислить, сколько именно обычного вещества, темной материи и темной энергии включает в себя Вселенная (4, 23 и 73 % соответственно). Тут уже становится совсем легко определить, будет ли Вселенная расширяться до бесконечности и будет ли это расширение ускоряться замедляться с течением времени.
Обычное вещество — это то, из чего сделаны все мы. Оно является источником гравитации и может поглощать, выделять или другим образом взаимодействовать со светом. Темная материя, как мы увидим в главе 4, представляет собой субстанцию неизвестной нам природы, которая, будучи источником гравитации, не взаимодействует со светом каким-либо известным нам образом. А темная энергия, знакомство с которой ждет нас в главе 5, ускоряет расширение Вселенной, заставит ее увеличиваться в размерах быстрее, чем в случае если бы темной энергии в ней не было вовсе. Френологические исследования показывают: сегодняшние космологи понимают, как вела себя новорожденная и юная Вселенная, однако в ней гораздо больше того, о чем они не имеют ни малейшего понятия.
И все же, невзирая на существенные пробел в понимании устройства Вселенной, сегодня у науки о космосе есть якорь — и более увесистый, чем когда-либо. Ведь реликтовое излучение несет на себе отпечаток того самого портала, через который все мы когда-то прошли, чтобы стать частью этого мира.
Открытие реликтового излучения привнесло в космологию новый уровень точности: оно подтвердило собой заключение, изначально полученное путем наблюдений за далекими галактиками, о том, что Вселенная расширяется уже миллиарды лет. Четкая и подробная карта реликтового излучения, впервые созданная для маленьких участков неба с помощью инструментов и телескопов, увлекаемых запущенными с Южного полюса аэростатами вверх, а затем и для целого небосвода с помощью зонда микроволновой анизотропии Уилкинсона (или спутника WMAP), закрепила за космологией отдельное место за столом экспериментальной науки. До того как мы с вами подойдем к концу нашего космологического повествования, мы еще не раз вернемся к спутнику WMAP, в 2003 году представившему первые результаты своих исследований.
Космологи — ребята с большим самомнением, иначе им вряд ли хватило бы наглости вычислять, с чего когда-то началась сама Вселенная. Правда, для новой эры наблюдательной космологии, возможно, будет характерна более скромная и менее раскованная позиция. Каждое новое наблюдение, каждая новая крупица данных могут пойти на пользу оказаться во вред имеющимся теориям. С другой стороны, наблюдения обеспечивают базовый фундамент космологии, который учеными во многих других научных областях достается в разы проще, потому что им достаточно тех обширных результатов наблюдений, которые можно получить в лабораторных условиях. В то же время новые данные почти наверняка смогут развенчать некоторые небылицы, родившиеся когда-то за неимением возможности получить результаты наблюдений, позволивших бы их подтвердить или опровергнуть.
Нет такой науки, которая развивалась бы, не оперируя точными данными. И мы приветствуем космологию в рядах точных наук!