Глава 2
О важности антивещества
Физике элементарных частиц принадлежит пальма первенства за самый необычный и одновременно с этим игривый профессиональный жаргон среди всех физических дисциплин. Где еще вы найдете отрицательный мюон и мюонное нейтрино, обменивающиеся нейтральным векторным бозоном? Или станете свидетелем глюонного обмена, благодаря которому соединяются странный и очарованный кварки? Где бы еще вам удалось встретиться с гравитино, фотино и скварками? А ведь, помимо этих, казалось бы, бесчисленных частиц со странными названиями, физикам приходится также иметь дело с параллельной Вселенной из их античастиц, которые образуют собой антивещество. Несмотря на то что вы встречаетесь с антивеществом преимущественно в научной фантастике, оно также существует и на самом деле. Вы, наверное, уже догадываетесь, что оно склонно аннигилировать при контакте с обычным веществом?
Между частицами и античастицами в нашей Вселенной уже давно развивается нежный роман. Они могут вместе родиться из чистой энергии и аннигилировать, обращая свою обретенную при рождении массу обратно в энергию. В 1932 году американский физик Карл Дэвид Андерсон открыл позитрон — положительно заряженную частицу-напарника отрицательно заряженного электрона. С той поры физики, занимающиеся элементарными частицами, регулярно изготавливают самые разные античастицы в ускорителях частиц по всему миру, но лишь совсем недавно им удалось собрать античастицы в полноценные атомы. С 1996 года международная группа ученых под руководством Вальтера Улерта при Институте ядерной физики исследовательского центра в немецком городе Юлихе создает атомы антиводорода, в которых антиэлектрон благосклонно вращается вокруг антипротона. Чтобы сделать несколько первых подобных антиатомов, физики воспользовались огромным ускорителем частиц, принадлежащим Европейской организации ядерных исследований (гораздо более широкой известной как ЦЕРН), расположенной в Женеве, Швейцария. Благодаря ему свершилось множество важных открытий и событий в области мировой физики элементарных частиц.
Физики применяют довольно простую методику создания антиатомов: сначала они изготавливают антиэлектроны и антипротоны, потом подталкивают их друг к другу при подходящей для этого температуре, а потом ждут, пока они не соединятся в атомы (то есть антиатомы). Во время первого раунда экспериментов команда Улерта смогла создать девять атомов антиводорода. Но в мире, в котором преобладает вещество, атому антивещества живется довольно туго. Эти атомы антиводорода просуществовали менее 40 наносекунд (40 миллиардных долей секунды), прежде чем аннигилировали один за другим вместе с атомами обычного вещества.
Открытие антиэлектрона стало одним из величайших триумфов теоретической физики, ведь его существование было предсказано родившимся в Великобритании физиком Полем Андриеном Морисом Дираком буквально за несколько лет до этого.
Чтобы описать вещество на уровне атомных и субатомных частиц, в 1920-е годы физики разработали новую отрасль науки, которая занималась бы разъяснением результатов их экспериментов с этими частицами. Используя новый установленный свод правил, сегодня известный как квантовая теория, Дирак вывел из второго решения своего уравнения постулат о том, что некий электрон-призрак с «другой стороны» Вселенной может иногда залетать в наш мир в качестве обычного электрона, оставляя за собой пробел — недоимку — в море отрицательной энергии.
Дирак надеялся, что это поможет ему лучше понять и описать природу протонов, но другие физики предположили, что подобный энергетический пробел, или «дырка», заявит о себе как антиэлектрон с положительным зарядом. В итоге его назвали позитроном, что отражает приписанный ему положительный электрический заряд. Обнаружение реально существующих позитронов подтвердило базовые предположения Дирака и окончательно возвело антивещество в ранг явлений, достойных не меньшего внимания, чем обычное вещество.
Уравнения, у которых существует два решения, довольно распространены. Один из самых простых примеров здесь, безусловно, — это ответ на вопрос: «Какое число нужно умножить само на себя, чтобы получить девять?» 3 или -3? Конечно, оба ответа верны, потому что 3 х 3 = 9, но и (-3) х (- 3) = 9. Физики не могут гарантировать, что все решения конкретного уравнения будут соответствовать событиям в реальном мире, но если у нас есть состоятельная математическая модель физического явления, то манипуляции с ней могут быть не менее полезны (и при этом в разы проще), чем манипуляции с целой Вселенной как таковой. Как и в случае с Дираком и антивеществом, подобные шаги часто приводят к предсказаниям, которые со временем удается проверить. Если предсказания оказываются неверными, теорию отвергают. Но каким бы ни был физический — материальный — результат, математическая модель позаботится о том, чтобы выводы, которые из нее можно сделать, одновременно были логическими и не содержали внутренних противоречий.
Для субатомных частиц характерно множество измеряемых свойств, среди которых масса и электрический заряд значатся как одни из самых важных. За исключением массы частицы, которая всегда одинакова для нее и ее античастицы, прочие свойства каждого типа античастицы всегда оказываются диаметрально противоположными тем, что мы наблюдаем у вещества. Так, например, масса позитрона всегда равна массе электрона, но у позитрона одна единица положительного заряда, в то время как электрон обладает ровно одной единицей отрицательного заряда. Сходным образом антипротон — это заряженная «наоборот» античастица протона.
У нейтрона с его нулевым зарядом тоже есть античастица — антинейтрон. У антинейтрона противоположный нулевой заряд по сравнению с обычным нейтроном. Это арифметическое волшебство возможно благодаря тому, что каждый нейтрон состоит из трех кварков, в свою очередь обладающих дробными зарядами. У трех кварков, которые образуют нейтрон, следующие заряды: -1/3, -1/3 и +2/3. В таком случае антинейтрон состоит из антикварков с зарядами +1/3, +1/3 и -2/3. Совокупный заряд каждой троицы равен нулю, но этот нуль образован парами противоположно заряженных составных субатомных частиц — кварков и антикварков.
На самом деле антивещество можно получить буквально из ничего. Если у фотонов гамма-излучения будет достаточно энергии, они смогут превратиться в пары «электрон — позитрон», конвертируя всю свою немалую энергию в небольшое количество вещества. Этот процесс полностью соответствует знаменитому уравнению Эйнштейна E = mc2.
Говоря языком первоначальных заключений Дирака, фотон гамма-излучения выталкивает электрон из среды отрицательной энергии, создавая обычный электрон и «дырку» в месте его отсутствия. Возможен и обратный процесс: если столкнутся частица и античастица, они аннигилируют, заполняя собой «дырку» и выделяя гамма-излучение. Надо отметить, что оно относится к тому типу излучения, которого следует сторониться.
Если вам удастся создать каплю из античастиц в домашних условиях, вы окажетесь в безвыходном положении. Встанет вопрос, как их хранить, ведь ваши античастицы немедленно аннигилируют при контакте с обычным веществом, то есть с любым пакетом, банкой или коробкой. Подходящая система хранения антивещества — мощная магнитная ловушка, которая удерживала бы его античастицы в одном месте, не давая им коснуться стен, дна или крышки «контейнера». Если вы создадите такое магнитное поле в вакууме, вы сможете вздохнуть с облегчением: теперь ваши античастицы в безопасности и аннигиляция им не угрожает. Такой магнитный аналог пробирки подойдет и для обращения с другими материалами, которые плохо сочетаются с контейнерами любого типа, например светящихся газов температурой в сотни миллионов градусов, которые используют в экспериментах по ядерному синтезу (разумеется, под присмотром ученых). Однако еще более глобальная проблема хранения возникает, когда у вас на руках появляются целые антиатомы — ведь антиатомы, как и атомы, обычно не отскакивают от магнитных стенок. Лучше всего будет хранить позитроны и антипротоны в отдельных магнитных ловушках вплоть до ключевого момента, когда вы соберетесь их соединять.
На создание антивещества уходит как минимум столько же энергии, сколько вы сможете получить, когда оно аннигилирует с веществом, чтобы вновь превратиться в энергию. То есть если перед запуском космического корабля у вас нет с собой полного бака антивещества, то работающий по принципу «автогенерации антивещества» двигатель будет просто постепенно отбирать у вашего корабля обычную энергию. Возможно, в первоначальной версии кино- и телесериала «Звездный путь» данный факт как-то и был принят к сведению сценаристами, однако капитан Кирк регулярно просил «прибавить ходу» за счет двигателей, работающих на веществе и антивеществе, на что главный инженер Скотти неизменно отвечал ему со своим чудесным шотландским акцентом: «Да больше некуда!»
Хотя физики считают, что атомы водорода и антиводорода должны вести себя одинаково, им пока не удалось подтвердить или опровергнуть это утверждение в экспериментальных условиях. Это связано в первую очередь с проблемой сохранения атомов антиводорода собственно в виде атомов — ведь они почти сразу же аннигилируют при контакте с протонами и электронами. Ученые хотели бы удостовериться, что поведение позитрона, связанного с антипротоном в атоме антиводорода, досконально следует всем законам квантовой теории и что сила тяготения антиатома работает точно так же, как и у обычных атомов. Может ли антиатом порождать антигравитацию — отталкивающую силу — вместо обычной гравитации — силы притяжения? Вся теория указывает на то, что этот сценарий невозможен, но вдруг это не так? Если мы найдем антигравитацию в антиатомах, это станет источником новых удивительных открытий и знаний об устройстве окружающего мира. В масштабе отдельных атомов величина гравитации между двумя отдельными частицами ничтожно мала. Не гравитация, но электромагнитное и ядерное взаимодействия определяют поведение этих крохотных частиц, каждое из них в разы мощнее гравитации. Чтобы проверить возможность существования антигравитации, понадобится достаточное количество антиатомов того, чтобы собрать из них объекты обычного размера — такие, чтобы их свойства можно было доступно и достоверно оценить и измерить, а затем сравнить со свойствами привычного нам вещества. Если сделать набор бильярдных шаров (стол и кии) из антивещества, будет ли игра в антибильярд неотличима от игры в бильярд? Будет ли антишар с нарисованной на нем антивосьмеркой падать в угловую лузу точно так же, как и обычный шар с восьмеркой? Вращаются ли антипланеты вокруг своих антизвезд так же, как и обычные планеты вокруг обычных звезд?.
Предположение, что суммарные свойства антивещества окажутся равнозначными свойствам обычного вещества, демонстрируя привычную силу тяготения, привычные столкновения, свет и т. д., — разумно с философской точки зрения и не идет вразрез со всеми прогнозами и предписаниями современной физики. К сожалению, это означает, что, если бы в нашу сторону двигалась некая антигалактика, столкновение которой с Млечным Путем было бы неизбежным, мы не имели бы никакой возможности различить ее заранее, а потом уже было бы слишком поздно что-то предпринимать. Правда, столь плачевная судьба не может быть регулярным явлением в сегодняшней Вселенной: если бы, например, одна антизвезда аннигилировала с одной обычной звездой, превращение их вещества и антивещества в энергию гамма-излучения было бы мгновенным, яростным и тотальным. Если бы две звезды массой примерно с наше Солнце (в каждой из них тогда было бы 1057 частиц) столкнулись в нашей галактике, их аннигиляция создала бы такой яркий источник света, что он временно превысил бы по силе всю энергию всех звезд сотни миллионов галактик и сжарил бы нас в мгновение ока. У нас нет никаких убедительных доказательств того, что нечто подобное хоть раз произошло где-либо в нашей Вселенной. По этой причине, насколько мы можем судить, во Вселенной все же преобладает обычное вещество, более того, так оно и было с первых же минут ее существования после Большого взрыва. Так что не беспокойтесь: когда вы в следующий раз отправитесь в межгалактическое путешествие, мгновенную и немучительную смерть от тотальной аннигиляции из-за столкновения большой массы вещества и антивещества можно смело вычеркнуть из списка первоосновных вопросов безопасности.
Однако теперь получается, что Вселенная пребывает в пугающем неравновесии. Мы предполагаем, что частицы и античастицы должны создаваться в равном количестве, но во все стороны от нас простирается космос, где вещества существенно больше и ему нисколько не мешает недостаток антивещества. Может, где-то есть тайные космические пазухи, в которых прячется все антивещество, которого мы недосчитались? Может, какие-то законы физики были нарушены в первые мгновения существования Вселенной тогда всем руководил какой-то неизвестный нам сегодня закон), из-за чего было навсегда нарушено равновесие между веществом и антивеществом? Мы можем никогда не узнать ответов на эти вопросы, но пока все же хотим дать вам один хороший совет: если над лужайкой у вашего дома в воздухе повиснет инопланетянин и протянет вам щупальце в знак приветствия, не торопитесь протягивать руку в ответ: сперва киньте ему свой любимый бильярдный шар-восьмерку. Если щупальце и шар взорвутся, инопланетянин, скорее всего, состоит из антивещества. (Не будем останавливаться здесь на том, как он сам и его приятели отреагируют на взрыв, на том, что будет с вами в результате такого взрыва.) Если же ничего плохого не случится, берите своего нового друга за космическую лапу и ведите его к лидеру всего человечества.