Запутанная история возникновения цветового зрения
Все человекообразные и другие обезьяны Старого Света (африканские и азиатские) обладают трихроматическим цветовым зрением и имеют три гена опсинов, тогда как американские обезьяны, а также грызуны и другие млекопитающие обычно обладают дихроматическим зрением и имеют два гена опсинов. Глядя на рис. 4.4, можно сделать вывод, что полноценное цветовое зрение возникло у предка приматов Старого Света после разделения линий, обитающих в Старом и Новом Свете. Кроме того, поскольку приматы Старого Света имеют третий зрительный пигмент колбочек, соответствующий ген опсина также должен был появиться после этого разделения. Это говорит о том, что наша с вами способность воспринимать цвета появилась у нашего древнего предка в Старом Свете, а не возникла независимо в ходе более поздней эволюции гоминидов.
Наличие у других млекопитающих (белок, кошек, собак и др.) лишь двух опсинов и дихроматического зрения означает, что общий предшественник всех млекопитающих обладал дихроматическим зрением. Но, прежде чем мы сделаем вывод о том, что полноценное цветовое зрение приматов является их «уникальным усовершенствованием», нужно исследовать зрение других позвоночных. Тут-то и возникает загвоздка. Прекрасным цветовым зрением обладают птицы, а также рептилии и многие рыбы, в частности золотые рыбки. У этих животных обнаружено не менее четырех генов опсинов. А у некоторых более примитивных позвоночных, таких как миноги, найдено пять генов опсинов. Это означает, что цветовое зрение возникло на очень ранних этапах эволюции позвоночных животных — до их разделения на челюстных и бесчелюстных. Поэтому, если рассматривать эволюционное древо позвоночных животных в целом, выясняется, что не относящиеся к приматам млекопитающие в какой-то момент потеряли гены опсинов и свою способность цветового зрения. Из картины распределения этих признаков у позвоночных можно сделать вывод, что в ходе эволюции способность к цветовому зрению сначала была широко распространена, но потом у предков млекопитающих она исчезла и возродилась вновь у предков приматов Старого Света.
Возможно, вы удивитесь: если цветовое зрение играет такую важную роль, как же оно могло исчезнуть? Наиболее правдоподобное объяснение связано с ночным образом жизни млекопитающих. Первые млекопитающие были мелкими животными и вели скрытный, ночной образ жизни в экосистемах, хозяевами которых были более крупные животные, такие как динозавры. При ночном образе жизни не нужно различать цвета, а нужно иметь возможность видеть в полумраке и в темноте. В следующей главе мы рассмотрим несколько примеров того, как подобные изменения образа жизни приводят к потере генов, включая гены цветового зрения.
Мы достаточно точно можем указать, когда в ходе эволюции приматов появился наш третий ген опсина. Остается ответить на вопрос о том, как это произошло. Как этот новый ген смог расширить диапазон цветового зрения? Этапы эволюции цветового зрения можно проследить по последовательности гена этого опсина. Итак, рассмотрим последовательности опсинов, проанализируем отличия двух наших красно-зеленых опсинов друг от друга и попробуем понять, какие из этих различий обеспечили их чувствительность к разным цветам. Общей закономерностью эволюции цветового зрения является «настройка» опсинов при адаптации к специфическим условиям. Сначала я расскажу вам, как настроены опсины человека, и представлю доказательства того, что они действительно полезны (адаптивны) для приматов. Затем я приведу несколько примеров того, как опсины разных видов организмов настроились на восприятие света с другой длиной волны при адаптации этих организмов к различным средам обитания и в ответ на различные стимулы.