Глава 3
Бессмертные гены. Бег на месте в погоне за вечностью
Совершенно очевидно, что все в природе изменяется, но за всеми этими изменениями стоит нечто вечное.
Иоганн Вольфганг Гете
Он не искал нового царства.
В конце лета 1966 г. микробиолог Том Брок вместе со своим студентом Хадсоном Фризом бродил вокруг гейзеров и горячих источников в Национальном парке Йеллоустон. Их интересовали микробы, живущие в прудах и окрашивающие почву вокруг некоторых источников в оранжевый цвет.
Ученые взяли образцы микроорганизмов из Грибного источника — большого пруда с температурой воды 73 °C, что в те времена считалось максимально высокой температурой, при которой могут существовать живые существа. Из образцов удалось выделить новую бактерию, обитающую в горячей воде. Оптимальная температура роста этой бактерии как раз близка к температуре горячего источника, из которого она была впервые выделена. Ученые назвали этот термофильный организм Thermus aquaticus. А еще Брок обратил внимание на розовые волокна вокруг некоторых источников с еще более горячей водой; эти волокна вызвали у него подозрение, что жизнь может существовать и при более высокой температуре.
В следующем году Брок вновь отправился в Йеллоустон «на рыбалку» за микробами. Его оснащение было простым: он привязывал к леске одно или два микроскопических стекла и забрасывал их в пруд, а другой конец лески привязывал к бревну или камню (не пробуйте воспроизвести этот эксперимент самостоятельно: вас арестуют, и, кроме того, вы можете очень сильно обжечься). Через несколько дней он вытаскивал стекла и обнаруживал на них заметный микробный рост, иногда такой значительный, что стекла были покрыты видимой глазом пленкой. Брок был прав, предположив, что микробы могут жить и в более горячей воде, но он и сам не предполагал, что они могут жить в кипятке. И эти микробы не просто переносили температуру 95 °C и выше, им было хорошо в дымящейся, кислой и кипящей воде, как в Серном котле в районе грязевых вулканов в парке Йеллоустон. Находки Брока в Йеллоустоне открыли людям глаза на существование удивительной адаптационной способности различных форм жизни, позволили обнаружить странных, но важных существ, таких как Sulfolobus и Thermoplasma, и положили начало научному исследованию так называемых гипертермофилов — микробов, живущих при очень высокой температуре.
После открытия Броком мира гипертермофилов последовали еще три открытия, внесшие важный вклад в развитие биологии. Все обнаруженные микроорганизмы Брок отнес к бактериям. Под микроскопом они действительно выглядели как обычные бактерии (рис. 3.1).
Рис. 3.1. Микроорганизмы из горячего источника. Эта фотография, полученная методом сканирующей электронной микроскопии, демонстрирует рост различных микробов на стекле, помещенном в Обсидиановое озеро в Национальном парке Йеллоустон. Из статьи P. Hogenholtz et al., 1998, Journal of Bacteriology, 180:366.
Однако примерно через десять лет Карл Воуз и Джордж Фокс из Университета Иллинойса обнаружили, что различные виды микроорганизмов, предпочитающие расти при высоких концентрациях серы, метана или соли, на самом деле образуют отдельное царство. Они в такой же степени отличаются от бактерий, как бактерии отличаются от эукариот (к которым относятся животные, растения, грибы и простейшие). Новое, третье царство живых организмов стали называть царством архей.
Второе открытие, последовавшее за открытием Брока, носило практический характер. Из Thermus aquaticus был выделен термостабильный фермент, способный катализировать удвоение ДНК при высокой температуре. Обнаружение этого фермента способствовало развитию новой, эффективной и быстрой технологии, позволяющей изучать гены любых организмов. Эта новая технология позволяет многократно увеличить объем генной информации, извлекаемой из природных источников, а на ее основе возник многомиллионный рынок, связанный с использованием ДНК для диагностики и судебной экспертизы.
Третье открытие было сделано в результате изучения генома архей. Анализ генов архей дал ключ к пониманию того, как возникли наши собственные предки-эукариоты примерно 2 млрд лет тому назад. До сих пор в ДНК человека и всех других эукариот присутствуют многие фрагменты ДНК этих примитивных организмов. Эти общие для всех фрагменты текста представляют собой следы тех ранних событий, которые привели к появлению первого эукариота, и доказывают, что архея была одним из наших генетических родителей.
В этой главе мы исследуем несколько самых старых ДНК-текстов на Земле. Примечателен сам факт, что эти древние тексты устояли перед вечностью и не поддались бесконечному воздействию мутаций. Кроме того, существование этих «бессмертных» генов также является веским подтверждением двух ключевых элементов эволюционного процесса — способности естественного отбора сохранять информацию, заключенную в ДНК, и происхождение всех форм жизни от общего предка.
Бессмертные гены стали живым доказательством одного важного, но несколько недооцененного аспекта естественного отбора. Ученые больше внимания уделяли «созидательной» роли естественного отбора и возникновению новых признаков, но это лишь одна сторона эволюционного процесса. Помимо этого, естественный отбор удаляет, говоря словами Дарвина, «вредные изменения». Я объясню, каким образом удаление вредных мутаций под действием естественного отбора проявляется на уровне ДНК в виде сотен генов, сохранившихся во всех царствах живых организмов на протяжении 2 млрд лет.
Эти бессмертные гены отражают эволюционный «бег на месте», поскольку текст ДНК изменяется только в узких пределах, определенных естественным отбором.
Сохранение отдельных генов на протяжении целых геологических эпох — это не только бесспорное доказательство защитной функции естественного отбора. Эти гены — ключ к пониманию того, как шла эволюция живых существ от их древних предшественников; это новый тип доказательств, который Дарвин не мог себе и представить. Я покажу, что эти бессмертные гены являются бесценными записями, отражающими степень родства между царствами и помогающими нам восстановить ход истории, которую нельзя проследить по окаменелостям.