5. Волшебство
Однажды, дело было в 1998 году, я зашел в лабораторию как раз в тот момент, когда техник убирал с микроскопа образец материала. Заметив меня, он сказал: «Не уверен, что вам это можно видеть. Лучше бы поостеречься, иначе придется заполнять кипу бумаг». И он быстрым движением спрятал образец.
Я работал тогда в пустыне Нью-Мексико в принадлежащей правительству США в лаборатории ядерного оружия. Как гражданин Великобритании, я имел базовый допуск к информации и не мог посещать некоторые зоны лабораторного комплекса. Почти все, говоря по правде. Однако в тот день я находился в своей лаборатории, так что поведение лаборанта показалось мне весьма странным, – впрочем, я прекрасно понимал, что расспрашивать бесполезно. Это был конец девяностых – в национальных лабораториях США опасались китайского шпионажа. Только что был заключен под стражу американский гражданин китайского происхождения Вен Хо Ли, обвиненный в краже ядерных секретов для Китая. Со мной регулярно проводили инструктаж на тему безопасности, а на моих американских коллег наседали, требуя отчитываться о любом небанальном разговоре. Конечно, для меня, типичного британца с пытливым умом и искрометным чувством юмора, лишние вопросы могли иметь опасные последствия. И все же тот материал был настолько необычен, что, углядев за долю секунды лишь небольшой фрагмент, я понял, что уже никогда его не забуду.
Мы, исследовательская команда, привыкли вместе обедать в закусочных по соседству. Это значило, что, покинув безопасное пространство с кондиционированным воздухом, мы выходили в ослепительную пустыню и садились в машины, припаркованные на залитом солнцем асфальте. За проволочными заграждениями до самой военно-воздушной базы простирались рыжие пески, сплошь утыканные кактусами. Машины обволакивало жаркое марево, кругом не было ни пятнышка тени. Место казалось нереальным, особенно по контрасту с обычной житейской рутиной, частью которой была поездка в колонне других машин, нагретых немигающим солнцем чуть не до точки кипения, в техасско-мексиканский фастфуд. День за днем мы вели никчемные разговоры, блеклые от жары. День за днем мысль о загадочном материале все глубже въедалась в мозг. Я думал только о том, что же, черт возьми, это было. Поделиться своими догадками я не мог – и забыть поэтому не мог.
Я запомнил, что материал был прозрачным, но странно переливался, подобно голограмме на драгоценном камне: материал-призрак. Ничего похожего я раньше не видел. Я даже рискнул предположить, что его нашли в космическом корабле инопланетян. Спустя некоторое время я уже сомневался, а был ли он вообще. Потом в припадке паранойи подумал, что кто-то залез в мой мозг и внушил, что это был всего лишь плод воображения. Каждый раз по дороге в кафе и обратно я твердил себе: «Я действительно видел это». Почему-то я испытывал собственнические чувства по отношению к тому материалу. Беспокоился даже, не испортят ли его в лаборатории. Это был переломный момент, после которого я осознал, что мне придется уйти.
Второй раз я увидел его лишь через несколько лет. Я вернулся в Великобританию и возглавил группу исследователей, занимающихся материаловедением в Королевском колледже Лондона. Однажды, когда я сидел дома и сочинял поздравительную открытку для своего брата Дэна, по телевизору шел анонс новости об успешной миссии НАСА, в ходе которой 2 января 2004 года удалось собрать образцы космической пыли с кометы 81Р/Вильда. И тут в новостях показали МОЙ МАТЕРИАЛ! Не мой, разумеется, в прямом смысле этого слова, но тот самый, которым я так отчаянно желал завладеть. «Так он все-таки инопланетный!» – торжественно сообщил я своей пустой квартире и кинулся к компьютеру, чтобы узнать больше. Я решил, что ученые добывают этот материал в космосе. И ошибся.
Он оказался веществом под названием аэрогель. Я сделал неправильный вывод: аэрогель не добывали в космосе, а использовали для сбора космической пыли. Впрочем, я не оставил своих размышлений и продолжал копать информацию. В итоге я выяснил, что у аэрогеля земное, хотя и довольно темное происхождение. В тридцатые годы прошлого века его изобрел некто Сэмюел Кистлер, американский химик. Причем действительным предметом любопытства ученого было желе. То есть как это – желе?
Кистлер задался вопросом, что же такое желе, которое нельзя назвать ни жидким, ни твердым. В конечном счете он решил, что это жидкость, заключенная в твердой тюрьме с тончайшими, практически невидимыми сетками вместо решеток. В съедобном желе ячейки сетки состоят из длинных молекул желатина, который получают из белка коллагена, образующего прочнейшую соединительную ткань – сухожилия, хрящи и кожу. В воде молекулы желатина разбухают и соединяются в преграду, которая не дает жидкости вытекать. В общем, желе похоже на пузырь с водой, только воду удерживает не внешняя оболочка, а внутренняя структура.
Внутри каждой ячейки жидкость удерживается поверхностным натяжением – той самой силой, которая делает воду влажной на ощупь, образует капли и позволяет им липнуть к предметам. Силы поверхностного натяжения внутри ячеек достаточно велики, чтобы не дать воде вытечь из желе, но слишком слабы, чтобы совершенно ее обездвижить, – вот почему желе дрожит и вот почему оно так странно ведет себя во рту: желе почти на 100 % состоит из воды, и, как только оно нагревается до 35 °C, внутренние желатиновые сетки тают, высвобождая воду. Но простое объяснение – вода, пойманная в крепкие сети, – не устроило Сэмюела Кистлера. Он хотел знать, насколько целостна и самодостаточна желатиновая структура. Иными словами, если бы нашелся способ удалить всю воду, сможет ли этот внутренний каркас существовать сам по себе? Чтобы ответить на этот вопрос, Кистлер провел серию экспериментов, результаты которых опубликовал в 1931 году в статье «Сплошные пористые аэрогели и желе» в журнале Nature. Вот что он пишет в преамбуле:
«Непрерывность жидкости, пропитывающей желе, доказывают процессы диффузии, синерезиса и ультрафильтрации. Тот факт, что такая жидкость может быть заменена другой, причем совершенно иного рода, ясно свидетельствует о том, что гелевая структура способна существовать независимо от жидкости, в которую погружена».
Кистлер хочет сказать, что, согласно результатам экспериментов, жидкость в желе представляет собой единое целое, а не разделена на части, и может быть заменена другой жидкостью. По его мнению, это доказывает, что твердый внутренний каркас желе действительно может существовать сам по себе, независимо от жидкости. Он также использует более общий термин «гель» вместо «желе», относя свои выводы к целому ряду желеобразных материалов, занимающих место между безусловно твердыми и безусловно жидкими веществами: от геля для волос и крепкого куриного бульона до цемента, в котором внутренний каркас-сетку составляют фибриллы силиката кальция.
Кистлер отмечает, что еще никому не удавалось отделить жидкость в желе от внутреннего каркаса:
«Попытки удалить жидкость путем выпаривания приводили к столь сильной усадке, что влияние на структуру оказывалось слишком глубоким».
Иными словами, когда воду пытались выпарить из желе, то замечали, что внутренний каркас просто разваливается. Но, торжественно объявляет Кистлер далее, он и его сотрудники нашли верный способ:
«Мистер Чарльз Ленд и я при любезно оказанной нам профессором Дж. У. Макбейном помощи предприняли попытку проверить гипотезу о том, что жидкость в желе можно заместить газом с незначительным или полным отсутствием усадки. Наши усилия увенчались полным успехом».
Хитрость состояла в том, чтобы заменить жидкость газом, пока она еще остается внутри желе, и таким образом использовать давление газа для поддержания каркаса. Впрочем, поначалу они применяли не газ, а жидкий растворитель (спирт), который легче было контролировать. Существовал риск испарения растворителя, однако ученые нашли способ его избежать:
«Простое выпаривание неизбежно приведет к усадке. Тем не менее, если желе поместить в закрытый автоклав с избыточным количеством жидкости и поднять температуру выше критической, а давление поддерживать на уровне предельного давления парообразования либо выше, то кипения жидкости не происходит, а следовательно, не происходит и сжатия геля из-за действия капиллярных сил на его поверхности».
Автоклав – это просто резервуар высокого давления, который подлежит нагреву. Из-за повышения давления в автоклаве жидкость внутри желе не закипает даже при температуре выше точки кипения. Капиллярные силы, о которых говорит Кистлер, обусловлены поверхностным натяжением жидкости. Кистлер предполагает, что по мере постепенного превращения жидкости в пар те же силы, которые удерживают вместе компоненты желе, начинают его разрывать. Но когда температура становится выше так называемой критической температуры, то граница между газом и жидкостью исчезает – и то и другое приходит в состояние с одинаковой плотностью и строением, то есть жидкость превращается в газ, минуя разрушительную стадию кипения. Кистлер пишет:
«Когда температура станет выше критической, жидкость напрямую, без закипания, превратится в газ. Желе так и «не узна́ет», что жидкость внутри его сеток стала газом».
Это же гениально: под давлением в автоклаве вновь образованный газ не может покинуть желе, и внутренний каркас остается невредимым:
«Остается лишь выпустить газ, и мы получим сплошной аэрогель с неизмененным объемом».
Только теперь Кистлер позволяет газу медленно исчезнуть, не причинив вреда каркасу и не нарушив объем желе. Таким образом, он доказал свою гипотезу.
Внутренний каркас желе
Должно быть, это был миг глубочайшего удовлетворения. Но Кистлер на этом не остановился. Полученные каркасы были невероятно легкими и хрупкими и состояли почти сплошь из воздуха. Фактически они были пеной. Кистлер придумал желе с внутренним каркасом из диоксида кремния – главного компонента стекла. С помощью вышеописанного процесса он получил кварцевый аэрогель, самый легкий твердый материал в мире. Именно этот материал я мельком увидел в научной лаборатории в пустыне много лет назад.
Кварцевый аэрогель, самый легкий твердый материал в мире, на 99,8 % состоящий из воздуха
Не довольствуясь этим достижением, Кистлер создал еще ряд аэрогелей, которые перечислил в своей статье:
«Пока что нам удалось получить аэрогели на основе кварца, алюминия, тартрата никеля, оксида олова, оксида вольфрама, желатина, агара, нитроцеллюлозы, целлюлозы и яичного белка, и мы не видим причины, по которой этот список нельзя продолжать бесконечно».
Заметьте, несмотря на успех с аэрогелем из кварца, Кистлер не устоял перед соблазном использовать яичный белок. Пока весь мир взбивал омлеты и бисквитное тесто, он занялся кулинарией иного рода: готовил в автоклаве яичный аэрогель – легчайшую меренгу в мире.
Кварцевый аэрогель выглядит чрезвычайно странно. На темном фоне (см. фото) он кажется голубоватым, но на светлом фоне его почти не видно. Он даже более невидим, чем обычное стекло, хотя стекло прозрачнее. Проходя сквозь стекло, луч света немного смещается за счет преломления света в стекле (степень смещения луча света определяется коэффициентом преломления стекла). В случае с аэрогелем, поскольку в нем просто меньше вещества, свет практически не преломляется. По этой же причине на его поверхности нет и намека на отражение, причем из-за крайне низкой плотности края аэрогеля размыты и сам он выглядит каким-то не совсем твердым, что, конечно же, неверно. По структуре внутренний каркас геля напоминает мыльную пену, с одним важным отличием: в аэрогеле пустоты внутри «пузырьков» взаимосвязаны. В кварцевом аэрогеле так много пустот, что обычно он на 99,8 % состоит из воздуха, его плотность всего в три раза превышает плотность воздуха и он почти невесом.
В то же время на темном фоне кварцевый аэрогель имеет отчетливый голубоватый оттенок, хотя должен быть совершенно бесцветным, коль скоро сделан из прозрачного стекла. Многие годы ученые искали причину этого явления, и она оказалась не менее удивительной, чем сам материал.
Когда солнечный свет попадает в земную атмосферу, его частицы (кванты) сталкиваются с молекулами различных веществ (главным образом азота и кислорода) и отскакивают от них, подобно шарикам для пинг-понга. Это называется рассеянием, и когда вы смотрите на небо в ясный день, вы видите свет, частицы которого, прежде чем достичь ваших глаз, многократно изменили свой путь, отскакивая от молекул в атмосфере. Если бы весь свет рассеивался одинаково, небо казалось бы белым. Но свет с меньшей длиной волны (голубой) рассеивается сильнее, чем свет с большей (красный и желтый), поэтому у неба голубой цвет.
Такое рассеяние называется рэлеевским. Оно весьма слабое, и чтобы его увидеть, требуется огромное количество молекул газа. В небе их достаточно, а в обычной комнате – нет. Иными словами, отдельные маленькие фрагменты неба не выглядят голубыми, но вся атмосфера имеет именно такой цвет. Однако если небольшая порция воздуха замкнута внутри прозрачного материала с миллиардами крошечных внутренних граней, рэлеевского рассеяния хватит, чтобы изменить цвет любого луча, падающего снаружи. У кварцевого аэрогеля именно такая структура – вот почему он голубой. Аэрогель у вас на ладони – маленький кусочек неба.
Пористые аэрогели обладают рядом интересных свойств, самое замечательное из которых – термоизоляция, то есть способность защищать от высоких температур.
Кварцевый аэрогель защищает цветок от пламени бунзеновской горелки
Аэрогель – надежный термоизолятор: если подставить под него бунзеновскую горелку, цветок, лежащий сверху, останется свежим и благоуханным.
Двойное остекление хорошо защищает от холодов, потому что пустое пространство между рамами мешает теплопередаче. Представьте себе, что атомы стекла расположены подобно слушателям на рок-концерте – плотной пританцовывающей толпой. Чем громче музыка, тем энергичней танец, тем чаще люди сталкиваются друг с другом. То же происходит и со стеклом: по мере нагревания материала атомы двигаются все активней. Фактически температура материала – это степень энергичности, с которой движутся атомы. Однако пустое пространство между оконными рамами затрудняет передачу энергии от атомов одного стекла к атомам другого. Разумеется, процесс работает в обе стороны: двойные рамы сохраняют тепло внутри зданий на Крайнем Севере и, наоборот, не пускают тепло внутрь зданий в Дубае.
Двойное остекление весьма эффективно, но все же допускает утечку тепла. Всякому, кто живет в холодном или жарком климате, об этом красноречиво говорят счета за электричество. Можно ли с этим что-то сделать? Ну да, бывает еще тройное и даже четверное остекление, с дополнительным барьером из одного-двух стекол. Но у стекла высокая плотность, поэтому с каждой новой рамой окна становятся более тяжелыми, громоздкими и менее прозрачными. Другое дело – аэрогель. Его пористая структура эквивалентна миллиардам стекол и воздушных прослоек. И потому он превосходно изолирует тепло. Обнаружив это и другие замечательные свойства аэрогеля, Кистлер упомянул о них в последнем предложении своей статьи:
«Кроме того, что данные наблюдения представляют научную ценность, необычайно интересны также физические свойства новых материалов».
В самом деле, необычайно интересны. Кистлер открыл лучший в мире термоизолятор.
Научная общественность с восторгом встретила новое изобретение, но очень скоро об аэрогелях все забыли. В тридцатых годах прошлого века были дела поважнее, к тому же никто не знал наперед, что будет востребовано, а что – отброшено за ненадобностью спустя годы. В том же 1931 году, когда Кистлер объявил об изобретении аэрогелей, немецкий физик Эрнст Руска создал первый в мире электронный микроскоп. А журнал Nature опубликовал в одном номере с результатами Кистлера статью Уильяма Брэгга, материаловеда и лауреата Нобелевской премии, о находках в области дифракции электронов внутри кристаллов. Руска и Брэгг положили начало новому пониманию внутренней структуры материалов, придумав инструменты, с помощью которых можно было видеть и визуализировать ее. Появился новый тип микроскопа, принципиально иной, нежели изобретенный в XVII веке оптический. Глазам ученых открылся невиданный прежде сверхмалый мир. Вскоре материаловеды уже с интересом вглядывались в металлы, пластики, керамику и живые клетки, уясняя внутреннюю работу атомов и молекул. Это было увлекательное время. Мир материалов переживал бурное развитие, вскоре изобрели нейлон, алюминиевые сплавы, кремниевые микросхемы, стекловолокно и другие революционные новинки. Аэрогели затерялись на этом фоне, и о них никто не вспоминал.
Кроме одного человека – самого Кистлера. Он рассудил, что необычайная красота и исключительные термоизолирующие свойства каркасов желе непременно обеспечат им будущее. Хотя кварцевый аэрогель хрупкий и непрочный, как стекло, для своего мизерного веса он все же достаточно крепок, чтобы использовать его в промышленности. Итак, Кистлер запатентовал изобретение и продал лицензию на изготовление аэрогелей химической компании «Монсанто Корпорейшн». К 1948 году она уже выпускала продукт под названием «Сантогель» – кварцевый аэрогель в форме порошка.
Казалось, у «Сантогеля» блестящие перспективы – он мог бы стать лучшим в мире термоизолирующим материалом. Но, увы, он опередил свое время. Энергия дешевела и дешевела, а проблему глобального потепления тогда не принимали всерьез. Дорогой термоизолятор приносил компании одни убытки. Потерпев неудачу, в «Монсанто» нашли другое, весьма причудливое, применение новому продукту – в составе чернил и красок. Аэрогель рассеивал свет, оптически выравнивая окрашенную поверхность и придавая ей матовость. В конце концов его и вовсе разжаловали в загустители овечьих мазей от мушиных личинок и гели для напалмовых смесей. В 1960–70-х годах дешевые заменители отняли у аэрогеля и эту узкую нишу, в итоге «Монсанто» прекратила его производство. Кистлер умер в 1975 году, не дожив до того дня, когда его чудесный материал нашел свое место под солнцем.
Новое явление аэрогелей состоялось не благодаря коммерческому использованию, а потому что их уникальные свойства привлекли внимание специалистов по физике элементарных частиц, изучавших эффект Черенкова в Европейском центре ядерных исследований (ЦЕРН). Черенковское излучение испускает субатомная частица при прохождении сквозь материал со скоростью, превышающей скорость света. Его обнаружение и анализ дает ключ к пониманию природы такой частицы и, следовательно, служит весьма экзотическим способом идентификации многочисленных невидимых частиц, с которыми имеют дело ученые. Аэрогель идеально подходит на роль материала, атакуемого элементарной частицей, поскольку фактически является твердой вариацией газа. В этом качестве он используется и по сей день, помогая физикам разгадывать тайны субатомного мира. Как только аэрогели очутились в научных лабораториях со сложным оборудованием, туманной миссией и большими бюджетами, их престиж опять вырос.
Тогда, в начале 1980-х, производство аэрогелей было по карману лишь очень богатым научным институтам. Таким, как ЦЕРН. Вскоре примеру европейского центра последовало Национальное управление по астронавтике и космонавтике США (НАСА). Кварцевый аэрогель впервые применили в космосе, для защиты оборудования от экстремальных температур, и здесь он подходил идеально, поскольку лучший в мире теплоизолятор почти невесом, что особенно важно, когда корабль вырывается из гравитационных объятий Земли. Это случилось в 1997 году при отправке к Марсу беспилотного аппарата Mars Pathfinder. С тех пор кварцевый аэрогель используют для изоляции на космических кораблях. Но как только ученые из НАСА поняли, что аэрогель способен путешествовать к другим планетам, ему нашли новое применение.
В ясную ночь можно увидеть, как небо пересекает яркий след падающей звезды. Долгое время считалось, что это метеориты на высокой скорости входят в земную атмосферу, нагреваются трением о воздух и, вспыхнув, сгорают. Считается также, что большая часть метеоритов – это космическая пыль, то есть обломки вещества, образовавшегося, наряду с кометами и астероидами, при возникновении Солнечной системы 4,5 миллиарда лет назад. Точное определение материалов в составе этих небесных тел помогло бы нам понять, как появилась Солнечная система, и объяснить химический состав Земли. Эта задача привлекает особый интерес уже много лет.
Анализ метеоритного вещества только раздразнил любопытство ученых: дело в том, что при прохождении сквозь земную атмосферу они подвергаются воздействию экстремально высоких температур. Поэтому люди из НАСА подумали, что было бы неплохо захватить некоторые из этих объектов еще там, в космосе, и доставить их на Землю в первозданном, нетронутом виде.
Однако у этого плана было уязвимое место. Дело в том, что космические объекты движутся с весьма высокой скоростью. Космическая пыль летит быстрее пули, нередко преодолевая 50 км в секунду, то есть 18 000 километров в час. Поймать такой объект непросто. Если вы, скажем, вздумаете собственным телом задержать пулю, то либо сила пули превысит прочность вашей кожи и пуля прошьет вас насквозь, либо вы наденете пуленепробиваемый жилет из высокопрочного материала, такого как кевлар, и пуля расплющится. В любом случае дело это рискованное. Но в принципе осуществимое. Когда бейсбольный или крикетный мяч ловят «мягким захватом», то стараются распределить, рассеять энергию мяча, а не бросают все силы на один мощный захват. Специалистам НАСА нужно было замедлить скорость космической пыли с 18 000 км в час практически до нуля, не повредив ни летательный аппарат, ни саму пыль. Идеально подошел бы материал со сверхнизкой плотностью, способный замедлить частицы пыли мягко и без повреждений на площади всего в несколько миллиметров; прозрачный, чтобы ученые могли сразу найти застрявшие в нем крошечные звездные пылинки.
И – о чудо! – такой материал нашелся. Более того, НАСА уже использовало его в космических полетах. Разумеется, это был кварцевый аэрогель. В основе его подвигов тот же самый механизм, который защищает каскадера во время съемок: тот падает с крыши на гору картонных коробок, и каждая, сминаясь под его весом, поглощает некоторое количество энергии удара. Чем больше коробок, тем лучше. Точно так же каждая из внутренних перегородок в пористом аэрогеле, сталкиваясь с частичкой пыли, поглощает крошечное количество энергии. В одном кубическом сантиметре содержится несколько миллиардов перегородок – этого достаточно, чтобы остановить пылинку, практически ее не повредив.
На способности аэрогеля бережно улавливать кометную пыль НАСА построило целый космический проект. 7 февраля 1999 года был произведен запуск аппарата Stardust, полностью оборудованного для полета через Солнечную систему и запрограммированного на сближение с кометой 81Р/Вильда. Аппарат должен был собрать межзвездную пыль в глубоком космосе, а также кометную пыль, что позволило бы специалистам НАСА изучить их материальный состав. С этой целью разработали специальное устройство, похожее на гигантскую теннисную ракетку, меж струн которой поместили аэрогель.
В течение лета и осени 2002 года в глубоком космосе, за миллионы километров от любой планеты, космический аппарат Stardust открывал люк и выставлял наружу свою гигантскую теннисную ракетку с аэрогелем. Это была одинокая игра в межзвездный теннис микроскопическими теннисными мячиками – останками давно погасших звезд, неиспользованными частичками нашей собственной Солнечной системы, до сих пор летающими в космическом пространстве. Stardust не мог оставаться в глубоком космосе слишком долго, так как должен был встретиться с кометой 81Р/Вильда, несущейся с дальних окраин Солнечной системы к ее центру (такой вояж комета совершает раз в 6,5 лет). Убрав аэрогелевую теннисную ракетку, космический аппарат поспешил на свидание с ней. Больше года он добирался до цели, и 2 января 2004 года встал на пути у кометы размером 5 километров в диаметре, облетающей вокруг Солнца. Затем, ловко сманеврировав и заняв положение в 237 километрах позади кометы, аппарат открыл люк, опять выставил аэрогелевую теннисную ракетку, на этот раз другой стороной, и впервые в истории приступил к сбору девственной кометной пыли.
Захватив ее в достаточном количестве, через два года Stardust вернулся на Землю. Приближаясь к нашей планете, он изменил курс и сбросил небольшую капсулу, которая под влиянием гравитации вошла в атмосферу со скоростью 12,9 километра в секунду – это самая высокая когда-либо зафиксированная скорость возвращения в плотные слои атмосферы, – став на какое-то время падающей звездой. Через пятнадцать секунд раскаленная капсула выпустила вспомогательный тормозной парашют. Спустя несколько минут, на высоте почти три километра над пустыней штата Юта, он был отброшен, и раскрылся основной парашют. Поисковые команды уже знали, где приземлится капсула, и отправились встречать ее. После семилетнего путешествия за четыре миллиарда километров капсула упала в пески пустыни штата Юта в 10:12 по Гринвичу в воскресенье 15 января 2006 года.
«Мы чувствуем себя родителями в ожидании ребенка, который уехал от нас юным и простодушным, а теперь возвращается с ответами на самые фундаментальные вопросы о нашей Солнечной системе», – сказал руководитель проекта Том Даксбери, сотрудник Лаборатории реактивного движения НАСА в Пасадене, штат Калифорния.
Впрочем, ученые не имели ни малейшего понятия о том, будут ли у них ответы на какие-либо вопросы, пока не открыли капсулу и не начали изучать аэрогелевые образцы. Космическая пыль вполне могла обойти аэрогелевые ловушки, или же слишком резкое торможение при входе в атмосферу могло разрушить аэрогель, превратив его в никчемный порошок.
Микроскопические следы частиц кометы в аэрогеле (фото НАСА)
Ученые зря волновались. Как только капсулу доставили в лабораторию НАСА и вскрыли, выяснилось, что аэрогель почти в идеальном состоянии. На его поверхности были крошечные дырочки, оставленные, как потом оказалось, звездными пылинками. Аэрогель справился с задачей, которую мог выполнить только он один, – доставил на Землю чистые образцы пыли кометы, рожденной, когда нашей планеты еще не было на свете.
Еще много лет ученые из НАСА искали крошечные фрагменты пыли, застрявшие в аэрогеле. Работа продолжается по сей день. Эта пыль невидима невооруженным глазом, а исследование образцов под микроскопом занимает много времени. К участию в столь масштабном проекте НАСА даже привлекло волонтеров. Программа Stardust@Home учит их искать фрагменты космической пыли, просматривая на домашнем компьютере тысячи микроскопических изображений аэрогелевых образцов.
Работа уже принесла немало интересного. Любопытнее всего то, что большая часть фрагментов пыли с кометы 81Р/Вильда демонстрирует присутствие капелек богатого алюминием расплава. Совершенно непонятно, как эти химические соединения могли образоваться в комете, в ледяном космосе, ведь для этого требуется температура свыше 1200 °C. Считалось, что кометы – это замороженные породы, которые появились одновременно с Солнечной системой, поэтому новость, мягко говоря, стала большим сюрпризом. Похоже, результаты работы опровергают стандартную модель возникновения кометы, или же мы еще многого не знаем о том, как зарождалась наша Солнечная система.
Космический аппарат Stardust выполнил свою задачу и исчерпал запас топлива на борту. 24 марта 2011 года на расстоянии 312 миллионов километров от Земли он принял последнюю команду из НАСА о прекращении связи. Подтвердив получение команды, Stardust в последний раз дал отбой. Сейчас он, похожий на рукотворную комету, летит все дальше от нас в глубокий космос.
Теперь, когда миссия аппарата окончена, не постигнет ли аэрогель та же судьба? Неужели и он канет в Лету? Очень может быть. Хотя аэрогели – лучшие в мире термоизоляторы, они все же слишком дороги в производстве, и пока неясно, так ли уж нас заботит сохранение энергии, чтобы оценить их пользу для экономики. Ряд компаний продают аэрогели в качестве термоизоляторов, но пока продукт применяют лишь в экстремальных условиях, например при бурении скважин.
Возможно, по экологическим резонам энергия будет стоить все дороже. И на смену привычным стеклопакетам, вполне вероятно, придет гораздо более передовой стеклянный материал на основе аэрогелевых технологий. Темпы исследований и разработки новых аэрогелей ускоряются. Уже существуют технологии производства материалов не жестких и хрупких, как кварцевый аэрогель, но гибких и эластичных. Своей гибкостью икс-аэрогели обязаны химии: между жесткими внутренними перегородками вставлены молекулы полимера, действующие наподобие шарниров. Из икс-аэрогелей можно делать ткани, а также самые легкие и теплые в мире одеяла, способные заменить пуховые одеяла, спальные мешки и тому подобное. Благодаря их необычайной легкости из этих материалов можно шить прекрасную одежду и обувь для регионов с суровым климатом. Они даже могут заменить упругую подошву из пеноматериала в спортивных ботинках. Недавно была разработана целая группа электропроводных углеродных аэрогелей, а также сверхвпитывающие аэрогели, способные поглощать токсичные отходы и газы.
Так что в будущем аэрогели вполне могут стать частью повседневной реальности и помогут нам выжить в условиях менее комфортного и более изменчивого климата. Как материаловеду, мне приятно осознавать, что ученые могут предложить миру кое-что на случай глобального потепления, но все же не такого будущего я хочу для своих детей. В обществе, где все поставлено на поток, включая былые святыни – золото и бриллианты, хочется верить, найдется место материалу, который будут ценить исключительно за его красоту и высокое значение. Большинство людей никогда не смогут пощупать аэрогель, но те, кто держал его в руках, никогда его не забудут. Это уникальный опыт. Аэрогель почти невесом, его края настолько зыбки, что невозможно точно определить, где кончается материал и где начинается пустота. Прибавьте к этому призрачно-голубоватый цвет и ощущение, что у вас в руках кусочек неба. Похоже, аэрогели так влияют на нас, что мы ищем оправдания своему увлечению. Как таинственный гость на вечеринке, они вызывают желание подойти ближе, даже если нам нечего сказать. Эти материалы не должны пропасть бесследно, они способны служить не только преградой для субатомных частиц. Они заслуживают другого будущего и ценны сами по себе.
Чистое любопытство, изобретательность и дух сомнения сотворили аэрогель. Странно, мы говорим, что ценим творчество этого рода, однако награждаем успешных творцов золотом, серебром и бронзой. Но если и был когда-либо на свете материал, олицетворяющий способность человека, глядя в небо, размышлять о своем предназначении, превращать скалистую планету в изобильный и удивительный край, исследовать просторы Солнечной системы; если и был материал, говорящий о хрупкости человеческого существования, материал небесно-голубого цвета, – то это аэрогель.