Книга: Из чего это сделано? Удивительные материалы, из которых построена современная цивилизация
Назад: 10. Бессмертие
Дальше: Слова благодарности

11. Эпилог

 

 

В этой книге я тщательно препарировал материальный мир. Я хотел показать, что материалы – это не просто разноцветные комки вещества, но еще и сгустки наших желаний и потребностей. Чтобы нам было где жить и во что одеваться, чтобы лакомиться шоколадом и смотреть кино, мы сделали замечательную вещь – проникли в сложную структуру материалов. Этот способ познания мира называется материаловедением, ему уже несколько тысяч лет, и он такое же человеческое достижение, как другие науки, музыка, изобразительное искусство, кинематограф, литература, о которых мы знаем гораздо больше. Эту последнюю главу я посвящаю языку материаловедения – с его помощью можно понять и описать сущность любого материала, а не только тех, которые мы подробно рассмотрели в этой книге.
Общий подход таков: материал не бывает цельным и однородным, это обман чувств. На самом деле материалы состоят из множества связанных между собой разнородных элементов, которые можно обнаружить на разных уровнях. Любой материал подобен матрешке – многочисленные структуры (почти все незаметны глазу) вложены одна в другую, идеально совпадая в пропорциях. Именно такая иерархическая архитектура делает каждый материал сложным и уникальным, в буквальном смысле делает и нас такими, какие мы есть.
Одной из наиболее фундаментальных материальных структур являются атомы, но важны и другие. Выше уровнем расположены дислокации, кристаллы, волокна, каркасы, гели и пены (ограничусь здесь структурами, о которых рассказывал, на самом деле их больше). Все это персонажи повести, и каждый вносит вклад в общий замысел. Есть в ней и главные герои, но понять до конца, почему материал ведет себя так или иначе, можно, лишь проследив за всеми участниками истории. Как мы уже видели, ложка из нержавеющей стали не имеет собственного вкуса, потому что атомы хрома внутри ее кристаллов вступают в реакцию с кислородом, компонентом воздуха, и образуют на поверхности невидимый защитный слой оксида хрома. Если поскрести по металлу, его не тронет ржавчина: защитный слой восстановится гораздо быстрее. Вот почему мы первое поколение, не ощущающее вкуса столовых приборов. Молекулярное объяснение в данном случае годится, но понимание других свойств нержавеющей стали требует рассмотрения всех ее структур.
Если мы посмотрим на материалы с этой точки зрения, то вскоре увидим, что все они обладают одинаковым набором внутренних структур. (Самый простой пример – все материалы состоят из атомов.) И выяснится, что у металлов много общего с пластмассами, у которых, в свою очередь, много общего с человеческой кожей, с шоколадом и прочими материалами. Чтобы зрительно представить связь между всеми материалами, взгляните на карту матрешковидного материального мира. Обычная карта изображает разные географические объекты в одном масштабе, а наша изображает один и тот же объект – показывает материал изнутри, в разных масштабах.

 

 

Начнем, пожалуй, с главного – с атомов. Они приблизительно в десять миллиардов раз меньше нас, поэтому человеческий глаз не различает атомные структуры. На Земле существует 94 природных типа атомов, при этом восемь из них составляют 98,8 % всей массы планеты: железо, кислород, кремний, магний, сера, никель, кальций и алюминий. Остальные, включая углерод, в техническом смысле лишь микроэлементы. Мы умеем превращать некоторые распространенные элементы в редкие, но для этого нужен ядерный реактор, причем стоимость процесса превышает затраты на разработку природного месторождения, да еще и приводит к образованию радиоактивных отходов. Вот почему в наш век золото все еще в цене. Если сложить все золото, когда-либо добытое человечеством, оно легко уместится внутри одного большого особняка. Тем не менее природная редкость некоторых полезных типов атомов, например неодима или платины, не такая большая проблема, поскольку свойства материала определяет не только атомный состав. Как мы уже знаем, разница между твердым прозрачным алмазом и мягким черным графитом не имеет никакого отношения к их атомному составу – оба материала состоят из одного и того же чистого элемента углерода. Коренное различие в их физических свойствах объясняется расположением атомов либо в виде куба, либо в виде слоев шестиугольных пластин. Эти структуры неслучайны – вы не можете создать любую, на свой выбор, – и подчиняются законам квантовой механики, которая трактует атомы не как сингулярные частицы, но как выражение многих волн вероятности. (Вот почему имеет смысл называть структурами как сами атомы, так и их упорядоченные скопления.) Некоторые из квантовых структур образуют свободные электроны, и тогда материал обладает электропроводностью. У графита именно такая структура, поэтому он проводит электричество. В алмазе точно такие же атомы, но в иной структуре не позволяют электронам свободно перемещаться внутри кристалла, поэтому алмазы не проводят электричество. Кстати, подобным же образом объясняется и их прозрачность.
Чудеса природы иллюстрируют тот факт, что даже с весьма ограниченным набором атомных ингредиентов можно создавать материалы с самыми разнообразными свойствами. Прекрасный пример тому – наши тела. Мы сделаны главным образом из углерода, водорода, кислорода и азота; легкие перестановки в молекулярной структуре элементов, щепотка минералов, таких как кальций и калий, дали широкий ассортимент биоматериалов, от волос до костей. Трудно переоценить философское и технологическое значение этой материаловедческой максимы: чтобы постичь сущность материального объекта, недостаточно знать его базовый химический состав. В конечном счете на ней стоит современный мир.
Следовательно, чтобы создать новый материал, мы должны соединить атомы. Если их наберется около сотни, получится так называемая наноструктура. «Нано» означает «одна миллиардная», этот мир населен телами примерно в миллиард раз меньше нас. Макромолекулы из десятков и сотен атомов образуют более крупные структуры, чем атомы. К этим структурам относятся физиологические белки и жиры; также наночастицы составляют основу пластиков, например нитроцеллюлозы, из которой делают целлулоид, и лигнина, который удаляют из древесины, прежде чем сделать из нее бумагу. Пористая наноструктура образует мелкодисперсную пену, такую как аэрогель. Все материалы, упомянутые в этой книге, проявляют свои характерные признаки на уровне наномолекул, и манипуляции именно с этой структурой существенно влияют на их свойства. Люди применяют нанотехнологии не одну тысячу лет, но косвенно – к примеру, при плавке металла. Когда кузнец ударяет молотом по куску железа, он меняет форму кристаллов, перемещая атомы в кристаллической решетке со скоростью звука. Разумеется, мы не видим этих наноразмерных превращений. На своем уровне мы замечаем лишь, как меняется форма металла. Для нас металл существует в виде цельного куска – вся замысловатая механика кристаллов открылась нам лишь недавно.
Нанотехнологии сегодня у всех на слуху, потому что теперь мы вооружены микроскопами и инструментами для прямого воздействия на эти мельчайшие скопления атомов и можем создать целый ряд новых наноструктур. Например, накопители света, которые сохраняют его в виде электричества, наноизлучатели и даже запахоуловители. Кажется, наши возможности безграничны, но самое интересное, что многие наноструктуры способны к самосборке. То есть материалы умеют сами себя создавать. Звучит пугающе, но на самом деле это полностью укладывается в законы физики. Ведь в чем принципиальная разница между мотором автомобиля и нанодвигателем? В нановерсии преобладают и очень ярко выражены электростатическая сила и поверхностное натяжение, которые удерживают частицы вместе, в то время как сила тяжести очень слаба. На автомобильный двигатель сильнее всего действует земная гравитация, растаскивающая детали двигателя в разные стороны. Можно сконструировать наномашины, которые будут собирать (и чинить) себя сами под действием электростатической силы и поверхностного натяжения. Подобная молекулярная машинерия по большей части уже присутствует в клетках, почему они и способны к самосборке, а вот мы на своем, человеческом, уровне нуждаемся в клее и мускулах.
Наноструктуры все же слишком малы. Чтобы увидеть или хотя бы почувствовать их, приходится собирать их и встраивать в микроскопические структуры, крупнее в десять-сто раз и тоже невидимые, – но с этими уже можно взаимодействовать. Речь идет о грандиозном технологическом достижении XX века – кремниевых микросхемах. Эти мельчайшие скопления кристаллов кремния и электропроводников приводят в движение электронную вселенную. Их миллиарды внутри множества окружающих нас электронных машин. Это они воспроизводят для нас музыку, фотографируют нас на отдыхе, стирают нашу одежду. Они являются искусственным эквивалентом нейронов мозга и по размеру сопоставимы с ядрами клеток человеческого тела. Как ни странно, в них отсутствуют мобильные составляющие, и для управления потоком информации они используют лишь электрические и магнитные свойства материалов.
Микрочипам соразмерны живые клетки, кристаллы железа, волокна целлюлозы и фибробетона. На этом же уровне мы находим еще один замечательный искусственный объект – шоколадную микроструктуру. Шесть видов кристаллической решетки какао-масла, с разной температурой плавления, образуют смешанную текстуру шоколада. В той же группе – кристаллы сахара и крупицы какао-порошка, содержащие молекулы шоколадного вкуса и аромата. Управляя данной микроструктурой, можно варьировать вкус и консистенцию шоколада – в этом, как правило, и заключается мастерство шоколатье.
На микроуровне материаловеды создают структуры, способные манипулировать светом. Так называемые метаматериалы обладают переменным коэффициентом преломления, то есть могут преломлять свет как угодно. Уже появились экраны невидимости с отрицательным коэффициентом преломления. Их устанавливают вокруг объекта: с какой стороны ни посмотри, он выглядит прозрачным.
Макроуровень объединяет атомные, нано– и микроструктуры. Это предел того, что человек может увидеть невооруженным глазом. Хороший пример такой структуры – сенсорный экран мобильного телефона. На вид он идеально гладкий и однородный, но стоит капнуть водой, и вы, как под увеличительным стеклом, увидите, что в действительности он состоит из крошечных зеленых, красных и синих точек. Всеми этими малюсенькими жидкими кристаллами можно управлять по отдельности и создавать доступные глазу комбинации, представляющие все цвета видимого спектра, при этом их можно включать и выключать достаточно быстро, чтобы смотреть кино в хорошем качестве. Другой пример полезных изменений на макроуровне – фарфор. Стеклянные и кристаллические структуры в его составе образуют прочный, гладкий и оптически динамичный материал.
Миниатюрный уровень – это сочетание атомных, нано-, микро– и макроструктур, видимое невооруженным глазом. Это масштаб нитки, волоска, иголки, линий шрифта, которым набраны слова, которые вы сейчас читаете. Если вы посмотрите на древесный срез или проведете по нему ладонью, вы увидите и почувствуете все эти структуры на миниатюрном уровне. Именно такое строение придает древесине особые осязательные характеристики: твердая, но не слишком жесткая, легкая, теплая. Миниатюрной структурой обладают веревки, покрывала, ковры и, самое главное, одежда. Прочность, эластичность, запах и тактильные свойства этих материалов – результат сочетания всех структур. Хлопковая нить внешне очень похожа на шелковую или кевларовую, но именно скрытые от глаз особенности их атомных, нано-, микро-, макро– и миниатюрных структур определяют разницу между плотной тканью, способной защитить от удара ножа, и гладким и приятным на ощупь атласом. Как раз на макроуровне мы задействуем осязание.
И вот мы подходим к человеческому уровню – венцу всех предыдущих. Здесь мы встречаем предметы, которые можно повертеть в руках, подцепить вилкой и положить в рот или в которых можно поселиться. Это масштаб скульптуры и живописи, кулинарии и сантехники, ювелирного искусства и архитектуры. Материалы на этом уровне узнаваемы – пластиковые трубы, тюбики масляной краски, камни, буханки хлеба, металлические замки. Опять они выглядят монолитными скоплениями вещества, но мы уже знаем, что это обман зрения. Однако, поскольку глубинные слои материи открываются глазу только при сильном увеличении, лишь в XX веке удалось обнаружить многоуровневую архитектуру материалов. Вот почему одинаковые на вид металлы ведут себя очень по-разному, вот почему одни пластмассы мягкие и эластичные, а другие жесткие и вот почему из песка можно построить небоскреб. Это одно из главных открытий в материаловедении, потому что очень многое объясняет.
Мы умеем создавать новые микроскопические структуры и новые материалы на их основе, но XXI век требует от нас большего: соединить искусственные структуры всех уровней в макроскопическом, соразмерном человеку объекте. Вроде бы хороший пример такой интеграции – смартфоны, сочетающие макромасштабный сенсорный экран с наномасштабной электроникой, но ведь можно вообразить систему, насквозь пронизанную связями, словно нервными импульсами. Если мы создадим такую структуру, тогда, возможно, в один прекрасный день целые комнаты, дома, а то и мосты будут генерировать энергию, направлять ее в нужное место, находить изъяны и самостоятельно их устранять. Фантастика, скажете вы, но не забывайте, что все это уже проделывает живая материя.
Поскольку структуры высшего уровня заключают в себе все предыдущие, то чем крупнее объект, тем сложнее он устроен. Такие сложные материи, как мир субатомных частиц и квантовая механика, на самом деле куда проще, чем, к примеру, петуния. Биологам и медикам это хорошо известно: обе науки всегда доверяли опыту и наблюдениям (и в меньшей степени – теории) именно потому, что предмет их изучения – крупные организмы – слишком сложны и слабо поддаются теоретическому описанию. Но, как показывает наша карта масштабов, живая материя в некотором смысле ничем не отличается от неживой. Кардинальная разница между ними состоит в том, что разные уровни живой материи теснее взаимосвязаны: живая материя без устали себя упорядочивает. Для этого она тянет коммуникации между разными этажами организма. Удар «человеческих» масштабов по неживой материи сказывается на разных уровнях, рождает отклик многих систем – неживая материя может помяться, разбиться, затвердеть, срезонировать. Что касается живой материи, то, заметив опасность, она может принять ответные меры: отпрянуть или приказать организму пуститься наутек. Очевидно, что живое ведет себя по-разному: ветка дерева в большинстве случаев пассивна, словно это неживая материя, а кошачья лапа реагирует весьма живо. Одна из самых больших загадок: что делает материю живой? Неужели связь между структурными уровнями и яркая ответная реакция – это все, что отличает живое от неживого? В подобном предположении нет ничего унизительного для живых существ, зато оно возвышает в наших глазах неживую материю, которая гораздо сложнее, чем кажется.
Несмотря на технический прогресс, материальный состав планеты пока что не претерпел существенных изменений. Есть живая природа, жизнь, и есть неживая – камни, здания, инструменты и т. д. Впрочем, чем больше мы узнаем о материи, тем больше размываются границы. Мы вступаем в новую материальную эру, в эру бионических людей – скоро каждый второй обзаведется органами, костями и даже мозгами из синтетики.
Впрочем, не только тело, искусственное или натуральное, делает нас людьми. Мы ведь живем и в нематериальном, духовном мире – в мире наших мыслей, эмоций, ощущений. Однако тело не вполне отделено от души и, как известно, оказывает на нее сильное влияние. Нам небезразлично, сидим ли мы на мягком диване или на жесткой табуретке. Это потому, что мы извлекаем из материалов не только пользу. Судя по археологическим находкам, как только люди изобрели орудия труда, они тут же принялись мастерить украшения, растирать краски, разрисовывать пещеры и шить одежду из шкур. Все это делалось из эстетических и культурных соображений и двигало технологии вперед на протяжении всей истории. У материалов есть социальное измерение, и мы выбираем их неслучайно. Они что-то значат для нас, они воплощают наши идеалы, и они многое говорят о нас самих.
Материальный мир соткан из смыслов, которые отчасти совпадают с пользой. Металл очень прочный и крепкий, не зря из него делают автомобили, но еще он вызывает ассоциации с надежностью и стойкостью, и конструкторы сознательно это используют. На языке промышленного дизайна металл – символ промышленной революции, с которой началась эра машин и массового транспорта. Не будь у нас металлургии и металлообработки, мы сами были бы другими. Нас восхищает этот материал, и всякий раз, когда мы садимся в поезд или автомобиль, кладем белье в стиральную машину или бреемся, мы доверяем нашей крепкой, надежной, сильной рабочей лошадке – металлу. Материальная культура – вещь непростая, потому что у нее долгая история. Некоторые не любят металл по той же причине, по которой другие им восхищаются, – например, из-за производственных ассоциаций. У материалов много смыслов, так что выбор эпитетов для заглавий в этой книге – лишь один из возможных. Это мое личное предпочтение, и в каждой главе я высказываю свой, личный взгляд, потому что отношения с материальным миром у нас у всех свои, личные.
Сознательно или подсознательно, мы все понимаем, о чем говорят материалы. Поскольку все на свете из чего-то сделано, у нас полна голова смыслов. Ими просто забрасывает нас окружающий мир. В деревне и в городе, в поезде и в самолете, в библиотеке и в торговом центре – они атакуют нас повсюду. Разумеется, дизайнеры и архитекторы сознательно манипулируют смыслами, чтобы одежда, продукты и дома нравились нам, чтобы ими хотелось обладать. Наше коллективное поведение придает силу смыслам и делает их всеобщими. Покупая одежду, мы покупаем образ человека, которым желаем, надеемся или обязаны стать (модные дизайнеры – большие доки по части смыслов). В любом уголке дома – в ванной, гостиной или спальне – обстановка должна отражать наши ценности. А другие люди навязывают нам свои ценности – на рабочем месте, на улице, в аэропорту. Вещи все время что-то отражают, усваивают, сообщают – постоянно перекраивают всемирную карту смыслов.
Однако это дорога двусторонним движением. К примеру, мы мечтаем о более прочных, мягких, водонепроницаемых и дышащих тканях – значит, нам нужно уяснить материальную структуру будущего сырья. Это движет вперед научную мысль, в том числе и материаловедение.
Таким образом, материалы в прямом смысле слова копируют нас, людей, и на всех структурных уровнях выражают наши потребности и желания.

 

 

Напоследок – еще раз моя фотография на крыше. Надеюсь, после прочтения этой книги вы посмотрите на нее иными глазами…
Назад: 10. Бессмертие
Дальше: Слова благодарности