Глава 10. Заключительная
§ 58. Как проектировали лазер
В заключительной главе принято подводить итоги. Но мы не будем тратить время на перечисление вопросов, которые не успели рассмотреть. Расскажем лучше о лазерах, которые являются самым ярким воплощением квантовой теории. Лазеры относятся к пионерским изобретениям. Так называются изобретения, которые не имеют аналогов. Хотя в рекламе можно встретить фразу типа, «новый телевизор не имеет аналогов», на самом деле это не так. У любого телевизора есть аналог, так как даже новейший телеприёмник обязан принимать стандартный сигнал от телестудии. Пионерским является изобретение, работающее на новых научных принципах, которые еще нужно открыть. К примеру, пароход изобрели в начале 19-го века. Но это изобретение нельзя назвать пионерским, так как паровоз изобрели ещё в 18-м веке. Вообще говоря, паровую машину могли собрать ещё древние греки, которые имели представление об энергии пара. Лазер – другое дело. Чтобы изобрести лазер, потребовалось сначала создать новый раздел физики – квантовую электронику. Это было сделано уже в 20-м веке. Обратимся к фактам.
Всем известна обыкновенная линза. Она преломляет лучи света, сводя их в крошечное пятнышко. Лучом от линзы можно поджечь бумагу или сухую траву. Но лист металла этим лучом прожечь невозможно, энергия недостаточно сконцентрирована. Дело в том, что преломление лучей зависит от частоты света. Именно по этой причине солнечный луч распадается в спектрометре в радужную полоску. Поэтому, как ни шлифуй линзу, фотоны разного цвета будут попадать в разные места и большой концентрации световой энергии не получить. Вот если бы все фотоны имели одинаковую частоту. Тогда их можно было бы сфокусировать в одну точку на мишени, где плотность энергии выросла бы в сотни тысяч раз. Таким лучом можно прожигать оболочки ракет или сбивать спутники с орбиты. Возникает вопрос, где взять источник света, который выдал бы в нужный момент нужное количество фотонов с одинаковой частотой? До сих пор мы убеждались, что атомы излучают фотоны, какие поглощают сами. Этого требует классический принцип теплового равновесия.
Предположим, что создана неравновесная среда, которая поглощает фотоны, но не излучает сразу, а хранит энергию некоторое время в одинаковых возбужденных электронных оболочках. Такое продлённое состояние возбуждения называют метастабильным. Если все метастабильные оболочки, как по команде, излучат разом одинаковые фотоны, то это будет то, что нужно. Следует заметить, что в водородоподобном атоме метастабильное состояние невозможно. Сферическая оболочка такого атома не способна «задерживать дыхание», она сразу излучает избыток энергии. Очевидно, здесь нужен твердый прозрачный кристалл, с примесью атомов, у которых электронные оболочки могут раздуваться, как грибообразное облако, над оболочками основных атомов. Оболочки основных атомов будут подпирать грибообразные оболочки примеси, не позволяя им достаточно долго вернуться в исходное состояние. Допустим, такой кристалл мы нашли. Но где тот «спусковой» механизм, который заставил бы все метастабильные оболочки разом излучить одинаковые фотоны?
Его нашел Эйнштейн. Изучая в научных отчетах расхождение баланса между атомами среды и внешними фотонами (из отчетов следовало, что некоторые образцы излучают больше фотонов, чем поглощают), он пришел к выводу, что кроме классического теплового излучения света в веществе присутствует дополнительный квантовый механизм, который создает избыток фотонов. Представим, что в водородоподобном атоме разрешены уровни энергии со следующими значениями: Е = -10, -6, -3, -1, -0.5 и т. д. (эВ). При высокой температуре в образце имеется достаточно атомов, в которых электроны находятся на 2-м уровне: Е2= -6 эВ. Допустим, в данный атом попадает фотон с энергией hν = 4 эВ. Согласно теории квантов, атом не может поглотить этот фотон, чтобы электрон перешел на более высокий уровень. Для 3-го уровня это много (нужно ровно 3 эВ). Для 4-го уровня это мало (требуется ровно 5 эВ). Зато энергия этого фотона в точности равна избытку энергии электрона относительно первого уровня Е1 = -10 эВ. Получив «удар» именно от фотона 4 эВ, электрон может сбросить излишек энергии 4 эВ в виде кванта 4 эВ и вернуться на 1-й уровень. В результате из атома вылетят два фотона с одинаковой энергией hν = 4 эВ.
Эйнштейн назвал этот механизм «вынужденным излучением», так как чужой фотон вынуждает возбуждённый электрон излучить свой фотон. Если эти два фотона попадут в два других атома, где имеются такие же возбужденные электроны, то после двух столкновений в пространстве появятся четыре фотона с одинаковой частотой. Учитывая скорости фотонов, за долю секунды произойдет лавинообразное размножение фотонов, причем все они будут иметь одинаковую частоту. Если эти фотоны собрать в пучок вогнутыми зеркалами и пропустить через систему линз, то теоретически все излучение будет бить в одну точку и прожигать всё на свете. Дело за малым, нужно подобрать подходящий кристалл.
Мейман использовал кристалл рубина, который состо ит из окиси алюминия с примесью хрома. Особенность рубина в том, что он содержит хром в виде трехвалентных ионов, в то время как обычно хром имеет валентность шесть. При поглощении света рубином три внешние оболочки хрома расширяются, занимая место отсутствующих. Разбухшие оболочки хрома подпираются оболочками алюминия, которые препятствуют их возвращению в исходное положение. Так обеспечивается метастабильное состояние оболочек хрома. За счет эффекта запирания время жизни метастабильных оболочек в рубине увеличивается в сто тысяч раз! Появилась надежда, что почти все атомы хрома успеют принять участие в размножении фотонов. Проблема в том, что к.п. д лазера ограничен концентрацией хрома. Она не должна быть чрезмерной, чтобы кристалл не потерял прозрачность. Поэтому мы не вправе ждать большой мощности от такого лазера. Но здесь дело принципа. Впервые в науке появилась возможность создать монохромный луч не фильтрацией солнечного света, а при помощи квантового механизма вынужденного излучения, предсказанного Эйнштейном.
В качестве источника энергии накачки Мейман использовал мощную импульсную ксеноновую лампу, изготовленную в виде трубки, завитой в спираль. Кристалл рубина в виде цилиндрика размером с карандаш закрепили внутри спирали. Зеркала для фотонов напылили на торцы кристалла. В одном из зеркал оставили окошечко для выходного луча. Лампу обмотали фольгой для лучшего отражения света внутрь. Опыт начался.
После мощнейшей вспышки лампы практически все валентные электроны атомов хрома, поглотив фотоны с длиной волны 694 нм (красный свет), перешли в метастабильное состояние, где были заперты оболочками алюминия на период времени 10-3 с. Но, согласно принципам квантовой теории, как минимум один возбужденный электрон почти сразу (через 10-8 с) должен был просочиться через электронный барьер и вернуться на нижний уровень. При этом атом хрома должен излучить фотон красного цвета, который начнёт лавинообразный процесс генерации излучения. Всё так и случилось. Уже через 10-4 с после момента вспышки все метастабильные электроны вынужденно излучили мириады фотонов и вернулись в исходное состояние. Фотоны, концентрируясь, метались вдоль оси кристалла между зеркалами, пока не сжались в сверхтонкий луч, который вышел через окно на торце рубина и прожёг дырку в мишени. Весь процесс генерации лазерного монохромного луча занял меньше одной миллисекунды. Успех был очевиден. В дальнейшем Мейман организовал коммерческое производство лазеров и стал состоятельным человеком.
Первый лазер имел небольшую мощность, всего несколько ватт. В настоящее время изобретены другие лазеры, в тысячи раз мощнее. В качестве рабочей среды в них используют кристаллы, органические жидкости и даже газы. Новые лазеры применяются для резки металла, керамики, в хирургической практике. В печати иногда появляются сообщения о боевых лазерах, но эти проекты пока находятся на стадии опытных разработок. Проблема в том, что для сбивания ракеты требуется лазерный луч с мощностью не менее 100 кВт. Это значит, что для надежной работы боевого лазера нужен генератор энергии с мощностью порядка 10 МВт. Такие генераторы имеются, но они так громоздки, что вся лазерная система пока не помещается ни в самолете, ни на танке.
§ 59. Отвечая на вероятные вопросы
Вероятны по меньшей мере два вопроса: почему нет главы о тепловой энергии и на каком основании автор позволяет себе усреднять данные, чтобы получить результат?
По первому вопросу напомним, что классическая те ория тепла (термодинамика) основана на уравнении PV = RT (59.1), где P – давление в тепловой машине, V – рабочий объем машины, T – рабочая температура машины, R – переходный коэффициент, измеряется в джоулях на градус. Учитывая, что давление измеряют в Н/м2, а объём – в м3, легко показать, что размерность [PV] = [Н/м2* м3] = [Н*м] = [Дж]. Таким образом, левая часть уравнения (59.1), которая характеризует тепловую машину, имеет размерность энергии. Это значит, что основатели тепловой теории, применив энергетический подход, получили прекрасный результат, учитывая разнообразие созданных тепловых машин, от мопедов до космических ракет. В принципе, нам к этому добавить нечего.
По второму вопросу ответ прост: на основании теоремы о среднем. Заметим, цель любых расчётов – получить число. В высшей математике этим числом является определённый интеграл. Для его вычисления принято сначала дифференцировать, затем интегрировать, искать пределы интегрирования, подставлять в формулу и т. д. Это долго и сложно. С другой стороны, известно, что определённый интеграл численно равен площади под графиком функции. Эта площадь равна произведению основания на среднюю высоту, в этом суть теоремы о среднем. А средняя высота равна половине суммы наибольшего и наименьшего значения. Элементарная геометрия понятнее высшей алгебры. Ведь наш курс называется «Понятная физика».
И.Д. Джавадов,
e-mail автора имеется в редакции издательства