Часть I
Революция началась
Глава 1
Постигаем операционную аналитику
Да, революция началась. Операционная аналитика движет промышленной революцией в аналитике и уже начинает раздвигать границы традиционного применения аналитики компаниями. Со временем операционная аналитика намного увеличит количество аналитических процессов, которые нужно создавать, и скорость, с которой аналитика будет выполняться. Далее в книге мы увидим, что такие новые концепции, как время принятия решения и время инсайта, станут главными факторами, определяющими характер инвестиций и точки приложения сил.
Операционная аналитика требует дисциплинированного и упорядоченного подхода в рамках всей организации, а также множества изменений в технологиях, процессах и корпоративной культуре. Поначалу люди будут недоверчиво относиться к передаче многих повседневных решений в вéдение машин и аналитических процессов. Тем не менее время покажет, что при отлаженной операционной аналитике результаты с лихвой окупят предпринятые усилия.
Да, революция началась! Прежде чем вы осознаете это утверждение, необходимо в точности разобраться с тем, что именно оно означает. Данная глава закладывает основу, на которой выстраивается вся остальная книга. Прежде всего, мы дадим определение операционной аналитике. Рассмотрим рыночные тренды, поддерживающие движение к операционной аналитике. Далее закрепим ряд важных тем, которые необходимо держать в уме при переходе организации от традиционной к операционной аналитике.
Определение операционной аналитики
Эта книга посвящена операционной аналитике. Но что такое операционная аналитика? Если уж она стала главной темой, надо дать определение данному термину. После чего попытаемся разобраться, в чем заключается уникальность операционной аналитики и что отличает ее от традиционного подхода.
Что такое операционная аналитика?
Термин «операционная аналитика» применим к ситуации, когда аналитика становится неотъемлемой частью принятых индивидуальных решений и осуществленных индивидуальных действий в рамках организации. Операционная аналитика используется для поддержки не стратегических и значимых, а повседневных тактических решений. Что еще важнее, когда аналитический процесс выведен на операционный уровень, он напрямую управляет деятельностью – не просто рекомендует те или иные действия, а непосредственно их реализует. Все вышеперечисленное и составляет суть операционной аналитики. Непосредственно реализуя решения и действия без вмешательства человека, операционная аналитика выводит интеграцию и воздействие аналитики на совершенно новый уровень.
Традиционные аналитические процессы в своем большинстве приносят результаты, которые далее используются в виде информации для принятия решений или вводятся в процесс принятия решений. Однако человек обычно включает в этот процесс свои личные суждения и затем одобряет полученный результат. В случае же операционной аналитики аналитический процесс и действия на основе проведенного анализа осуществляются незамедлительно. Человек не вмешивается ни в решения, ни в действия.
Разумеется, именно человек принимает решение о необходимости внедрения операционно-аналитического процесса и налаживает его. Однако когда процесс запущен, он уже самостоятельно получает доступ к данным, осуществляет анализ, принимает решения и фактически выполняет необходимые действия. Он может выполняться тысячи и даже миллионы раз в день. После того как люди в организации осозна́ют, что можно получать аналитику, интегрированную на таком уровне, у них часто возникает потребность в ее увеличении. В результате рождается спрос на еще большее количество аналитики и на все возрастающем уровне сложности. В то же время наличие автоматизированной операционной аналитики создает необходимость в тщательном мониторинге процессов. Об этом мы поговорим в шестой главе.
Предписывайте!
Определяющая особенность операционной аналитики – она выходит за пределы описаний или даже прогнозов. Операционная аналитика предписывает. Это значит, что операционная аналитика встраивается в бизнес-процесс, чтобы самостоятельно принимать решения и выполнять действия на основе заложенных в нее алгоритмов – все это без вмешательства человека.
На протяжении последнего десятилетия много внимания уделялось переходу от описательной аналитики к прогностической. В классической бизнес-аналитике внимание сосредоточивалось на анализе произошедшего с описательной точки зрения, например определение объема продаж по каждому региону, доли своевременных поставок или других важных показателей. Цель же прогностической аналитики, наоборот, состоит в предсказании того, что произойдет в будущем. Как увеличить долю своевременных поставок? Какие клиенты с наибольшей вероятностью откликнутся на грядущее маркетинговое предложение? Операционная аналитика идет еще дальше и делает аналитику предписывающей. Операционно-аналитический процесс начинается с определения того, какие действия повлияют на время поставки или повысят уровень откликов, а затем автоматически вынуждает эти действия произойти. В таблице 1.1 суммируются вышеназванные различия.
Отличие операционной аналитики
Очень важно различать операционную аналитику и операционное применение аналитики. Хотя, на первый взгляд, здесь может привидеться игра слов, я уверяю вас, что это не так. После того как мы рассмотрим несколько примеров, различие станет для вас вполне очевидным.
Аналитика применялась для решения операционных проблем на протяжении многих лет. Так будет продолжаться и дальше, и операционное применение аналитики сохранит свою значимость. Однако операционная аналитика выходит за прежние пределы. В идеале хотелось бы иметь новый термин, который четко бы отделял операционную аналитику от операционного применения традиционной аналитики, но я такового не знаю. Это печально, поскольку сходство определений может привести к путанице, особенно когда они произносятся подряд. На одной из конференций во время обсуждения данной темы один из участников в шутку предложил мне использовать термин «фрэнксова аналитика», что, разумеется, слишком эгоцентрично, тем более если воспринять предложение всерьез. Поэтому я постараюсь сосредоточиться на различиях между двумя подходами, а не на их наименованиях.
Различия между операционным применением аналитики и операционной аналитикой наглядно демонстрируют всю важность и сложность последней. Операционно-аналитические процессы зачастую так же сложны, как любые аналитические процессы, использовавшиеся организацией до сих пор, но вдобавок новые процессы должны быть автоматизированы, существенно масштабированы и осуществляться с молниеносной скоростью. Эти мощные процессы вместе с тем отличаются сложностью и требуют серьезного труда. Давайте рассмотрим несколько примеров, которые помогут прояснить имеющиеся различия.
Одно из важных отличий операционной аналитики состоит в том, что анализ выполняется в автоматическом и интегрированном режиме в пределах так называемого времени принятия решения. Другими словами, анализ выполняется со скоростью, позволяющей принять решение. В некоторых случаях принятие решений происходит в режиме реального времени (или очень близко к тому). В других случаях период ожидания может составлять несколько минут, часов или даже дней. Знать время принятия решения крайне важно для достижения успеха, поскольку аналитический процесс должен быть доступен и выполняться в пределах этого интервала.
Традиционно многие организации подстраивали свои веб-сайты под клиентов через определение их индивидуальных покупательских привычек с дальнейшим размещением соответствующих предложений и адаптацией под потребителей к следующему посещению сайта каждым клиентом. Подобная веб-кастомизация доказала свою эффективность и сегодня используется почти повсеместно. Обработка сведений о клиенте по состоянию на сегодняшний вечер, с тем чтобы завтра утром клиент увидел уже адаптированный под него сайт, – таково операционное применение аналитики. Однако подобная предварительная кастомизация не является примером операционной аналитики. Это всего лишь пример применения традиционной пакетной обработки в операционном окружении.
Операционная аналитика требует кастомизации следующей открываемой клиентом страницы с момента клика по кнопке next до момента открытия страницы. Этот процесс должен использовать не только всю историческую информацию о клиенте, но и новейшую, в том числе о его самых последних действиях на веб-сайте. Адаптацию веб-страницы за короткий промежуток времени между кликами и выполняет операционная аналитика. Обратите внимание: подобный анализ осуществляется не для одного, а для всех клиентов, посещающих сайт, что выливается в миллионы микрорешений, основанных на аналитике. Даже если при навигации по сайту клиенты не замечают разницы между пакетным и операционным подходами, на самом деле разница, пусть и скрытая, существенна.
Применяйте аналитику не только к операциям
Аналитические процессы применялись для решения операционных проблем на протяжении многих лет. Однако операционная аналитика выходит за пределы использования результатов традиционной пакетной аналитики в операционных целях. Операционная аналитика применяется в пределах «времени принятия решений» для каждого индивидуального решения.
Еще один наглядный пример, на котором мы подробнее остановимся далее, относится к производственной области. Показания датчиков двигателей дают возможность производителям разработать оптимальный график технического обслуживания. Наличие детальной информации о функционировании двигателя автомобиля, самолета или любого другого транспортного средства позволяет выявить шаблоны, со временем ведущие к отказу двигателя. Такая разработка более эффективного графика на основе показаний датчиков – это результат операционного применения аналитики.
В свою очередь, операционная аналитика, основанная на показателях датчиков двигателя, выдается почти сразу и гораздо более индивидуализирована. Она выполняется параллельно с работой двигателя, а поступающая с датчиков информация анализируется в режиме реального времени. Если выявляется некий шаблон, который, как известно, неминуемо приведет к проблеме, принимаются меры по предотвращению либо исправлению этой проблемы. Когда водитель за рулем автомобиля получает упреждающее уведомление о том, что с двигателем начинает твориться что-то неладное, – это пример операционной аналитики в действии.
Предостерегаю: если организация не научилась успешно применять традиционную аналитику на основе пакетной обработки, то не сумеет и сделать аналитику операционной. Сначала нужно обзавестись основными аналитическими возможностями, а уже потом их масштабировать. Первым делом необходимо развить качественную аналитику, эффективную при пакетной обработке. Этот процесс можно сделать операционным только после подтверждения того, что данные и навыки, которыми обладает организация, могут быть использованы для построения надежного аналитического процесса. Если хотите, чтобы ваша организация вышла на следующий уровень, нужно прежде всего убедиться в наличии прочной аналитической основы. Без нее операционная аналитика останется недостижимой мечтой.
Здесь нет «быстрых» клавиш
Не овладев мастерством традиционного пакетного анализа, организация не сможет перейти к операционной аналитике, которая должна опираться на прочную основу.
Основные элементы, делающие операционную аналитику уникальной
Итак, мы рассмотрели, чем операционная аналитика отличается от традиционной в ряде важных аспектов. Давайте суммируем эти различия в виде четырех характеристик, которые определяют отличия операционной аналитики от традиционной.
Определяющая характеристика № 1: операционная аналитика интегрирована и автоматизирована. Традиционно организации вели аналитику в режиме оффлайн и затем передавали ее результаты повсюду, чтобы их принимали во внимание при принятии решений. Человек участвовал не только в построении аналитического процесса, но и в его осуществлении на постоянной основе. А операционно-аналитический процесс выполняется внутри операционных систем в автоматическом и интегрированном режиме.
Определяющая характеристика № 2: операционная аналитика предписывает действия. Операционная аналитика выходит за рамки описательной и даже прогностической – она предписывает действия. Не просто рекомендует, какое наилучшее предложение следует сделать клиенту, когда он вернется, а действительно предписывает сделать это предложение, отдав распоряжение соответствующей системе.
Определяющая характеристика № 3: операционная аналитика принимает решения. Ее процессы не только предписывают или рекомендуют, но и принимают решения, а затем выполняют действия, которые из них вытекают. Этим она в корне отличается от традиционной аналитики, где анализ производит рекомендации, а человек решает, принять их или отклонить: смотрит на результаты анализа и принимает окончательное решение, на основании которого выполняются дальнейшие действия.
Определяющая характеристика № 4: операционная аналитика осуществляется в пределах «времени принятия решения». Во многих случаях оно соответствует реальному времени. В некоторых случаях аналитика применяется к входящему потоку, а не к хранилищу данных. Операционная аналитика не может позволить себе ждать до следующего сеанса пакетной обработки – она должна осуществляться немедленно, чтобы принять решение и исполнить его.
Определяющие характеристики операционной аналитики
Операционная аналитика – это интегрированные автоматические процессы принятия решений, предписывающие и реализующие действия в пределах «времени принятия решения». Как только операционно-аналитический процесс получает одобрение и запускается, он начинает автоматически принимать тысячи или миллионы решений.
Добывать новые знания при помощи аналитики – это замечательно. Но после того как знания обнаружены среди данных, предстоит сделать важный шаг – наилучшим образом применить их аналитически. Разработать процесс, который будет воспроизводить новые знания, масштабировать их, а затем подкреплять ими решения – и все это почти в режиме реального времени, – очень трудно. Таким образом, центральная роль по-прежнему остается за человеком. Кто-то должен разрабатывать, выстраивать, конфигурировать и контролировать операционно-аналитические процессы. Компьютеры сами по себе не смогут принимать решения.
Важный момент, который стоит лишний раз подчеркнуть, состоит в том, что операционная аналитика представляет собой новую ступень эволюции аналитических технологий. Организация не может сразу же перепрыгнуть на уровень операционной аналитики, пока не овладеет мастерством традиционного пакетного анализа. Кроме того, как мы обсудим в шестой главе, операционно-аналитические процессы требуют тщательного тестирования перед запуском, поскольку автоматизированные плохие решения могут нанести серьезный ущерб. Прежде чем система начнет принимать миллионы микрорешений, необходимо убедиться в том, что они будут высокого качества.
Добро пожаловать в Аналитику 3.0!
Эволюция аналитики с течением времени хорошо отражена в концепции Аналитики 3.0, разработанной Международным институтом аналитики (International Institute for Analytics, IIA) и его руководителем научных исследований Томом Дэвенпортом. Я преподаю в IIA, поэтому мне посчастливилось участвовать в обсуждении концепции на начальных этапах ее разработки. Давайте рассмотрим, в чем именно она заключается, поскольку это позволит нам увидеть эволюцию операционной аналитики в более широкой перспективе. Знание того, что и как менялось в мире аналитики на протяжении его истории, поможет нам понять, почему операционная аналитика готовится занять господствующее положение.
Аналитика 1.0: традиционная аналитика
Эпоха Аналитики 1.0 на протяжении многих лет охватывала все действия организаций в сфере аналитики. Я говорю об Аналитике 1.0 в прошедшем времени, поскольку организациям следует оставить этот подход в прошлом, если они этого еще не сделали. Как показано на рис. 1.1, Аналитика 1.0 в очень большой степени опиралась на описательную статистику и отчетность с редкими вкраплениями прогностической аналитики. Предписывающей аналитики тогда не существовало. Что касается данных в эпоху Аналитики 1.0, то они поставлялись почти исключительно из внутренних источников и были хорошо структурированы. Они включали все данные, связанные со сделками организации, информацию из систем управления предприятия и т. п. Хотя в то время эти данные считались невероятно большими и сложными для обработки, по сегодняшним меркам они являются относительно малыми и простыми. Данные собирались и хранились ИТ-отделом и предоставлялись по запросу. К сожалению, чтобы сделать данные доступными для анализа, ИТ-специалистам требовалось довольно много времени. Все это ограничивало широту и глубину применения аналитики, а также ее воздействие.
Что еще хуже, когда аналитики наконец-то получали эти данные, то, прежде чем приступить к анализу, им требовалось проделать еще массу дополнительной подготовительной работы. Дело в том, что в корпоративных системах данные редко хранятся в формате, пригодном для анализа. Выстраивание аналитического процесса требовало разного рода преобразований, агрегирования и комбинирования данных из различных источников. Все это еще больше увеличивало временной промежуток между моментом, когда ИТ-специалисты делали данные доступными, и моментом получения результатов. Таким образом, время в эпоху Аналитики 1.0 тратилось на сбор данных, а не собственно на анализ.
С точки зрения организационной культуры профессиональные аналитики относились к секретным сотрудникам. В большинстве случаев они были изолированы как от бизнеса, так и от информационных технологий. Их считали чокнутыми учеными, которые иногда могли предложить интересные идеи. Они не входили ни в какие другие команды, кроме собственной. (Подробнее мы рассмотрим эту тему в восьмой главе.) Почти все разрабатываемые ими аналитические процессы предназначались для поддержки внутренних решений. Клиенты или пользователи продукции редко, если вообще когда, были осведомлены об этой закулисной аналитике.
Организации должны оставить Аналитику 1.0 в прошлом
Аналитика 1.0 на протяжении многих лет играла крайне полезную роль. Но в сегодняшней экономической ситуации необходимо подключать дополнительные возможности и использовать новые подходы. Оставьте Аналитику 1.0 в прошлом.
Традиционные технологии, такие как бизнес-аналитика и инструменты отчетности, использовались для создания широкого диапазона отчетов, панелей управления и оповещений. Но даже простые отчеты создать было не так просто. Для этого требовалось, чтобы специалист из центрального аналитического отдела узнал требования пользователя, составил отчет и представил его в пригодной для просмотра форме. Процесс был длительным и формализованным, и очень немногие пользователи могли создавать такие отчеты самостоятельно. Встречались и вкрапления прогностической аналитики, но эпоха Аналитики 1.0 по большей части опиралась на описательную аналитику и отчетность.
Ирония состояла в том, что потребности в более оперативной аналитике и отчетности не существовало, поскольку сам бизнес не мог реагировать на них намного быстрее. В начале моей карьеры при разработке модели кампании прямой рассылки мы использовали данные трех-четырехнедельной давности для определения домохозяйств, которые следует включить в рассылку. Затем составленный нами список отправлялся в отдел рассылки, а ему требовалось еще две недели, чтобы напечатать рекламные материалы и отправить их по указанным адресам. Наконец, проходила еще неделя, прежде чем письма доставлялись в почтовые ящики адресатов. Это означало, что между моментом сбора данных и тем временем, когда результаты анализа могли повлиять на клиентов и бизнес, проходило шесть, а то и восемь – десять недель. Ускорять аналитические процессы не имело смысла, поскольку рассылки осуществлялись по фиксированному месячному графику и списки требовались с той же регулярностью. Легко понять, почему в такой среде многие аналитические процессы не реализовывали свой потенциал в полной мере.
Аналитика 2.0: аналитика больших данных
В начале 2000-х началась эпоха Аналитики 2.0, открывшая перед нами мир больших данных. Они во многих отношениях были новинкой – зачастую гораздо объемнее и сложнее, чем данные, которые использовались в эпоху Аналитики 1.0, и при этом необязательно так же структурированные. Большие данные могли включать в себя все что угодно – от документов, фотографий и видео до сенсорных данных. Множество больших данных, используемых для анализа, поступают из внешних источников, например социальных сетей. Несмотря на свое внешнее происхождение, они могут оказаться очень ценными.
Сегодня, в эпоху Аналитики 2.0, как видно на рис. 1.2, мы обнаружили, что для обработки больших данных и выполнения разнообразных аналитических процессов нам нужны новые аналитические технологии и новые вычислительные возможности. В результате из забвения на свет вышли такие технологии, как Hadoop (о ней мы расскажем позднее), а аналитические процессы были модернизированы, чтобы соответствовать этим новым технологиям. Основное внимание в эпоху Аналитики 2.0 сосредоточено на поиске наиболее дешевых способов сбора и хранения необработанных данных, а уже затем на поиске способов их применения.
Отчетливо выраженным трендом стало недавнее появление «науки о данных», изучающей способы анализа больших данных профессиональными аналитиками, а также такой профессии, как «исследователи данных». Основное различие между ними и традиционными профессиональными аналитиками состоит в выборе инструментов и платформ, используемых для анализа. Традиционные профессиональные специалисты в крупных организациях склонны использовать такие инструменты, как SAS и SQL, для анализа базы данных в окружении реляционной базы данных. Исследователи данных чаще применяют такие инструменты, как R и Python, для анализа данных в окружении Hadoop. Тем не менее эти различия носят тактический и в основном семантический характер. Любой специалист, хорошо разбирающийся в том или другом окружении, легко может переключаться между ними. Несмотря на разные наименования, профессиональные аналитики обладают практически одинаковыми базовыми наборами навыков и складом ума. (Подробнее мы обсудим эту тему в восьмой главе.)
В эпоху Аналитики 2.0 профессиональные аналитики хотя и не были включены в процесс принятия решений, но повысили свой статус в организациях до такого уровня, что могут напрямую влиять на принимающих решения лиц. Профессиональные аналитики перестали быть секретным ресурсом, тщательно огражденным от бизнес-сообщества.
Как мы увидим далее в этой главе, многие организации, особенно фирмы, работающие онлайн и в области электронной коммерции, начали разрабатывать коммерческие продукты и услуги, основанные исключительно на данных и аналитике. Первыми это предприняли онлайновые фирмы, они же первыми вступили в эпоху Аналитики 2.0. Одним из самых примечательных примеров является социальная сеть LinkedIn, создавшая такие продукты, как «Люди, которых вы можете знать» и «Группы, которые вам могут понравиться». Такие основанные на аналитике продукты используют информацию, собираемую в рамках управления и поддержания аккаунтов пользователей, и генерируют новую информацию, за которую во многих случаях пользователи платят.
Один из парадоксов Аналитики 2.0 состоит в том, что производимая аналитика зачастую оказывается не очень-то и продвинутой. Отчасти это было обусловлено тем, что объем и сложность данных затрудняют их перевод в пригодный для анализа формат. Отчасти объясняется незрелостью источников данных и аналитических инструментов. При всем поднятом вокруг нее ажиотаже эпоха Аналитики 2.0 по-прежнему в значительной степени опирается на отчетность и описательную аналитику с относительно малыми вкраплениями прогностической и предписывающей аналитики.
Одной лишь Аналитики 2.0 недостаточно
Эпоха Аналитики 2.0 выводит на передний план большие данные и новые возможности для применения аналитики. При этом нецелесообразно создавать отдельные команды, технологии и инструменты исключительно для анализа больших данных. Аналитические процессы должны охватывать любые данные и соответствовать любым требованиям, предъявляемым к аналитике. Вот почему Аналитика 2.0 – это не конечный результат.
Одно из заблуждений, характерных для эпохи Аналитики 2.0, проистекает из того факта, что многие профессиональные аналитики не прошли через эпоху Аналитики 1.0. Многие из них имеют подготовку в области компьютерных наук и пришли в аналитику из технологической сферы. Порой аналитики поколения 2.0 попросту не знают всего того, что делали крупные инновационные компании в эпоху Аналитики 1.0. Как следствие, они могут предположить, что все используемые ими концепции и методики являются совершенно новыми. Иногда это действительно так, но чаще всего нет. Давайте рассмотрим пример, который иллюстрирует эту ситуацию.
Как-то на конференции я услышал выступление одного молодого человека. Не буду называть его имя и компанию, поскольку моя цель – пролить свет на распространенную логическую ошибку, а не поставить кого-то в неловкое положение. Докладчик подробно изложил методы, посредством которых он со своей командой разрабатывал разнообразные аналитические процессы для сайта электронной коммерции его компании. И доводы, и методы были вполне разумными. Компания поступала правильно: например, применяла аффинитивный анализ и совместную фильтрацию для определения того, какие дополнительные продукты могли заинтересовать клиента исходя из истории его прошлых покупок и просмотров. Такого рода анализ традиционные ретейлеры применяли на протяжении многих лет.
Однако докладчик ошибочно заявил, что метод аффинитивного анализа нельзя было применять до появления больших данных и некоторых новых технологий. Он искренне верил в то, что применение широко распространенных алгоритмов открывает новые горизонты, поскольку не имел представления о происходившем на протяжении многих лет в традиционной розничной торговле. Метод аффинитивного анализа оказался в новинку только для этого молодого специалиста (и подобных ему). Парень попросту не знал истории аналитики. Действительно, в атмосфере ажиотажа вокруг больших данных легко предположить, что в прошлом ничего интересного не происходило. К сожалению, из-за такой неосведомленности можно потратить массу времени на выработку давно уже существующих решений, вместо того чтобы заняться более полезным делом.
Эпоха Аналитики 2.0 может многое выиграть, если будет заимствовать знания и опыт из эпохи Аналитики 1.0. Для достижения же максимального успеха организациям следует объединить все лучшее из эпохи Аналитики 1.0 и эпохи Аналитики 2.0, а затем двигаться дальше. Так мы придем в эпоху Аналитики 3.0.
Аналитика 3.0: всеобъемлющая аналитика воздействует максимально
Аналитика 3.0 сосредотачивается на дальнейшем развитии, а не на замене знаний, полученных в эпохи Аналитики 1.0 и 2.0. Подобно тому как Аналитика 2.0 не заменила собой Аналитику 1.0, так и Аналитика 3.0 не заменяет собой других. Аналитика 3.0 сочетает все предыдущие знания, накопленные ранее, в единой схеме деятельности, как это видно на рис. 1.3. Она объединяет традиционную аналитику на основе традиционных данных с новой аналитикой больших данных. Когда организации начали использовать большие данные, они обнаружили, что невозможно выделить аналитику больших данных в полностью автономную функцию. Большие данные – это не просто большие объемы обычных данных, требующие больше аналитики. Они требуют интеграции со всеми остальными процессами. Эпоха Аналитики 3.0 знаменует появление новой – интегрированной и развитой – аналитической парадигмы. Сейчас, в начале 2014 г., мы видим, что лидеры из сферы как традиционного, так и интернет-бизнеса начинают вступать в эпоху Аналитики 3.0. Операционная аналитика – естественное следствие этого тренда.
Причем Аналитика 3.0 вновь привлекает внимание к процессу обнаружения нужных данных. Этот процесс направлен на быстрое обнаружение новых знаний в данных и определение действий, продуктов и услуг, которые можно извлечь из добытых знаний. Полная реализация потенциала, заложенного в процесс обнаружения, требует от многих организаций значительной культурной эволюции. Аналитика должна стать сердцевиной стратегии предприятия, и повышение статуса аналитики должно направляться и санкционироваться сверху. Кроме того, необходимо перестроить существующие аналитические платформы и процессы. Далее в книге мы поговорим о процессе обнаружения данных и об изменениях, которые он потребует.
Разнообразие и новизна типов данных и доступных источников представляют собой один из главных вызовов в эпоху Аналитики 3.0 и в то же время ведут к появлению столь же разнообразных и инновационных аналитических технологий. Новые аналитические методы будут одной из определяющих характеристик эпохи Аналитики 3.0. Власть данных и расширение их обработки в конечном итоге подвигнут организации к широкому применению прогностической и предписывающей аналитики. Хотя потребность в описательной аналитике и отчетности по-прежнему останется, в эпоху Аналитики 3.0 организации наконец-то начнут осуществлять мечту об интегрированной и операционной аналитике. Она будет встроена не только в централизованные крупномасштабные корпоративные системы, но и в операционные приложения, используемые конечными пользователями, например в мобильных устройствах, банкоматах и интерактивных терминалах.
Развивайтесь до Аналитики 3.0
Эпоха Аналитики 3.0 представляет собой последний на сегодняшний день этап развития аналитики. Сочетая в себе все лучшее, что создано в эпохи Аналитики 1.0 и Аналитики 2.0, она развивает аналитику дальше.
Новые архитектуры, требуемые для Аналитики 3.0, добавят организациям сложностей. Аналитика 3.0 делает необходимым наличие параллельной обработки не только в окружении реляционной базы данных, но и в таком окружении, как распределенная файловая система Hadoop. Также может потребоваться смешение различных систем запоминания, графических процессоров и т. д. Все это мы рассмотрим в пятой главе.
Пожалуй, сильнее всего в эпохе Аналитики 3.0 меня, как профессионального аналитика, воодушевляет то обстоятельство, что мои коллеги наконец-то будут объединены в официально оформленную команду, ставшую стратегически значимой частью бизнес-организации. Такую команду возглавит директор по аналитике или как минимум руководитель уровня вице-президента, специалист, который будет курировать всю корпоративную аналитику. Более распространенной станет и должность директора по данным. Все эти роли мы обсудим подробнее в восьмой главе. Эпоха Аналитики 3.0 открывает новый захватывающий мир для профессиональных аналитиков.
Операционализация аналитики посредством Аналитики 3.0
Давайте рассмотрим один из видов анализа, который сегодня применяют многие крупные банки и телекоммуникационные компании. Он направлен на выявление действий, связанных с закрытием счета клиентом, и может проиллюстрировать операционную аналитику эпохи 3.0 в действии. Обратите внимание на то, что новым здесь является не прогнозирование убыли или текучести клиентов как таковое, а расширение сферы анализа и применения его результатов.
В процессе анализа текучести необходимо собирать данные о любых действиях, которые могут быть связаны с закрытием счета. Это касается источников как традиционных, так и больших данных, например истории транзакций, жалоб, запросов по нескольким каналам на аннулирование комиссии, постепенного уменьшения остатка на счете, заявлений в социальных сетях и т. д.
Со временем анализ текучести был усовершенствован, с тем чтобы выявлять определенные шаблоны действий, которые в сочетании гораздо опаснее, чем по отдельности. Такого рода анализ часто называют пат-анализом. Другими словами, не будет большой проблемы, если отклонить запрос на отмену комиссии, сделанный клиентом в тот момент, когда он проверяет свой счет онлайн и видит ее в первый раз. Но если клиент звонит в клиентскую службу и снова просит отменить комиссию, а вслед за звонком наносит визит в офис, то отказ клиенту в его просьбе может существенно повысить риск закрытия счета.
Построение пат-анализа для точного определения пути действий представляет собой довольно сложную задачу. Клиент может обратиться в банк в любое время и по любому каналу, включая колл-центр, филиал банка, чат в режиме онлайн или электронную почту. Банк должен знать, что именно уже произошло, чтобы предпринять правильное действие. Создание операционно-аналитического процесса требует обновления рекомендуемых действий по отношению к каждому клиенту после любого с ним контакта. Например, после того как клиент запросил об отмене комиссии и было принято решение об одобрении или отклонении запроса, эта новая информация должна быть немедленно включена в повторное вычисление правильной реакции во время следующего взаимодействия с клиентом. Отсутствие операционно-аналитического процесса в этом случае может привести к проблемам. Давайте посмотрим почему.
Легко опоздать навсегда
Операционная аналитика позволяет организации принимать наилучшее решение в любой момент времени. Использование же для аналитики данных, которые устарели всего лишь на несколько минут, может привести к неблагоприятным, а то и глубоко ошибочным решениям.
Например, я обращаюсь с просьбой об отмене комиссии в банк, который использует пакетную обработку данных только раз в сутки. Итак, банк получает мой запрос по электронной почте и отказывает мне. Его аналитики определяют, что в моем случае отказ не увеличит риска закрытия счета, и поэтому рекомендуют отклонить мой следующий запрос на отмену комиссии. Эта рекомендация загружается в систему и готова для использования на следующий день.
Назавтра я из машины снова звоню в банк с той же просьбой. Моя просьба отклоняется, как и было запланировано. Но отказ раздражает меня настолько, что я решаю зайти в филиал банка, мимо которого сейчас проезжаю, и лично поговорить с менеджером. Вот где начинаются проблемы. Поскольку обработка данных производится только вечером, то ни руководитель филиала, ни система не знают, что я только что звонил в банк и снова получил отказ. Рекомендация об отказе по-прежнему действует. Только вечером аналитики определят, что филиал должен был удовлетворить мой запрос, чтобы сохранить меня как клиента. Последнее взаимодействие существенно увеличило риск закрытия мной своего счета, однако руководитель филиала не знал об этом, поскольку его не снабдили аналитикой. Это классический пример операционного применения традиционной аналитики, и легко увидеть, почему такой подход может давать сбои.
При использовании же операционной аналитики система обновила бы данные, отразив мой последний звонок, а затем с учетом обновления немедленно выработала бы рекомендации удовлетворить просьбу, и, когда я входил в филиал, его руководитель уже был бы готов сообщить мне об отмене комиссии, благодаря чему я и дальше останусь с этим банком. Если еще несколько минут назад действовала рекомендация об отказе, то мой звонок в клиентскую службу полностью изменил бы представление об адекватной реакции. Ради своего преуспевания банк должен быть способным собирать все данные о взаимодействиях со мной в текущем режиме, а затем после каждого такого взаимодействия запускать аналитический процесс, чтобы правильно совершать свои дальнейшие шаги. Именно так работает операционная аналитика в эпоху Аналитики 3.0. Мой друг Джеймс Тейлор, генеральный директор компании Decision Management Solutions и автор книги «Системы, управляющие принятием решений: Практическое руководство по использованию бизнес-правил и прогностической аналитики» (Decision Management Systems: A Practical Guide to Using Business Rules and Predictive Analytics, 2011), много писал об операционной аналитике. Вот его мнение: «Организации, которые хотят процветать, а не просто выживать, должны преобразовать себя сверху донизу. Высокое качество операционных действий стало обязательным, а путь к такому качеству пролегает через аналитику. В планах каждого руководителя должен значиться переход к принятию каждого решения на основе аналитики и внедрению лучших решений во все операционные процессы».
Как аналитика меняет бизнес
Несмотря на все более широкое распространение аналитики, многие руководители не осознают, насколько фундаментально она меняет бизнес-модели. В этом разделе мы рассмотрим несколько важных для понимания концепций и трендов. Возможно, вашей организации потребуется более масштабно и без боязни рассмотреть, каким образом аналитика может изменить ваше будущее.
Аналитика как цель, а не побочный продукт
Четко выраженный тренд в операционной аналитике проявляется в том, что сегодня все большее количество продуктов собирает данные. Во многих случаях аналитика, применяемая к этим данным, является одним из главных – если не самым главным – назначением продукта. Другими словами, физический продукт сегодня зачастую является просто механизмом для сбора данных. Давайте посмотрим, что это означает.
В прошлом компании всегда создавали новые продукты, будь то игрушки, тарифные планы или типы банковского счета. Целью являлось, разумеется, успешное продвижение продукта, однако его успех мало зависел от данных или аналитики. Мало-помалу компании собирали данные о продажах продукта, его потребителях, а также о часто выявляемых дефектах и проблемах. Это позволяло понять, как можно улучшить продукт, однако данные получались как побочный результат продажи продукта, а не вследствие присущего ему свойства.
Сегодня же выпускаются продукты, чье единственное назначение – сбор данных, позволяющих применить аналитику. Сам по себе физический продукт фактически вторичен и является не более чем каналом для сбора и анализа данных. В одних случаях ценность продукта для потребителей определяется именно предусматриваемой им аналитикой; в других – ценность продукта для потребителей может заключаться в чем-то ином, в то время как компания извлекает пользу из аналитики. Когда аналитика используется во благо потребителей, тот продукт, который может обеспечить наиболее ценные данные и аналитику, а не традиционные функции, и преуспеет в конкуренции.
Кого интересует ваш продукт? Сверьтесь с аналитикой!
Одним из драйверов операционной аналитики является эволюция продуктов, которые существуют главным образом для обеспечения сбора и анализа данных. В некоторых случаях физические продукты служат не более чем инструментами сбора данных для аналитических процессов.
Таких продуктов появляется все больше. В эту категорию попадают многие доступные в Интернете бесплатные услуги. Возьмем, например, бесплатную электронную почту. Компании предоставляют ее вовсе не из любви к общественно-полезной деятельности, а потому что могут многое узнать об ее пользователях. Провайдер получает возможность размещать рекламу с учетом поведения пользователей, и она окупается, когда пользователи на нее откликаются. В некоторых случаях сервисы фактически читают от начала до конца электронные письма пользователей и анализируют их, чтобы генерировать рекламные предложения. Скажем, если вы часто переписываетесь с друзьями на спортивные темы, то можно держать пари, что будете получать много предложений, связанных со спортом. Кроме того, провайдер электронной почты может продать информацию о вашем интересе к спорту другим организациям, готовым заплатить за поиск любителей спорта. Так что надо очень внимательно читать правила хранения личной информации, прежде чем соглашаться с ними. В шестой главе мы поговорим о вопросах конфиденциальности более подробно.
На рынке сегодня также присутствуют аналитические процессы, которые напрямую превращаются в продукты. Наглядный тому пример – рекомендательный механизм популярного поставщика потокового видео Netflix. Он использует данные о навигации пользователя по сайту и определяет, какие фильмы могут ему понравиться. Этот рекомендательный механизм рассматривается Netflix как реальный продукт. За него отвечают собственные продакт-менеджеры, управляющие им точно так же, как любым другим продуктом. Netflix постоянно старается добавить своему рекомендательному механизму новые функции и свойства, усилить его привлекательность для пользователей. Так, введен интерфейс Max, который превращает подбор рекомендаций в игру.
Успех Netflix в огромной степени приписывают именно ее рекомендательному механизму, хотя этот продукт, по сути, состоит из аналитики и использования данных. Механизм также представляет собой законченный операционный процесс, который управляет своими алгоритмами и предоставляет результаты пользователям миллионы раз в день без вмешательства человека.
Аналитические продукты стирают границы между отраслями
Теперь давайте рассмотрим интересный пример того, как ориентированные на аналитику продукты начинают стирать границы между отраслями. Речь идет о новой волне персональных приборов контроля физической формы, носимых на запястье или талии. Такие устройства на рынке предлагаются Nike, Jawbone и FitBit, в данном случае мы остановимся на Nike.
Если выйти на улицу и спросить у 100 первых встречных, что они знают о компании Nike, то 99 % из них ответят, что это производитель спортивной одежды, спортивного снаряжения или чего-то в том же духе. Все ответы правильные. По крайней мере, на протяжении многих лет именно этой продукцией славилась компания. Но произошедшие за последнее время изменения заставляют нас пересмотреть представление о том, в какой же отрасли на самом деле работает Nike. То же самое происходит и со многими другими предприятиями.
В 2012 г. Nike выпустила продукт под названием FuelBand. Это устройство носят на запястье, как часы, а измеряет оно показатели физической активности, например количество сделанных за день шагов, и некоторые характеристики сна. Подобные устройства сегодня стали очень популярны. Сейчас, когда я пишу эту книгу, одно из таких как раз надето на моем запястье. Давайте посмотрим, каким образом FuelBand изменяет традиционную бизнес-модель Nike и посягает на ее отраслевую классификацию.
Хотя большинство людей все еще считают Nike производителем спортивной одежды и обуви, FuelBand ломает это устоявшееся представление. Начать с того, что FuelBand представляет собой высокотехнологичный прибор, снабженный датчиками, передатчиком и т. п. Таким образом, Nike сегодня работает в производственной отрасли хай-тека.
Что первым делом должны сделать потребители после покупки FuelBand, чтобы обеспечить его эффективное использование? Скачать на свой компьютер, планшет или мобильник программный продукт. Итак, сегодня Nike также является поставщиком ПО.
Ваша компания по-прежнему работает в традиционной для себя отрасли?
По мере того как традиционные производители вдруг обнаруживают, что им приходится в интересах своих потребителей внедрять датчики, собирать данные и применять аналитику, границы между отраслями стираются. Сегодня требуются не только новые компетенции. Причины, по которым потребители выбирают продукт, определяются, возможно, не столько традиционными критериями, сколько возможностями продукта, связанными со сбором данных и аналитикой.
Но зачем потребителям необходимо это ПО? Для того чтобы их смартфон или компьютер мог взаимодействовать с FuelBand, получать от него собранные данные и передавать их Nike. Итак, еще один бизнес Nike – это сбор и хранение данных.
Цель этих действий состоит в том, чтобы Nike могла выполнять аналитику и выявлять шаблоны физической активности и сна пользователей. Таким образом, Nike предоставляет аналитику в сфере услуг. А если компания сумеет соотносить данные, собираемые FuelBand, с вопросами здоровья, то можно будет даже утверждать, что Nike работает и в сфере здравоохранения. Я думаю, теперь вы уловили суть: вследствие применения FuelBand компания стала заниматься множеством различных видов деятельности, не имеющих никакого отношения к производству одежды.
Возможно, самое главное заключается в том, что выбор при покупке FuelBand или аналогичного конкурирующего с ним продукта определяется вовсе не его привлекательным внешним видом или следованием моде. Эти факторы играют роль при выборе традиционных продуктов Nike, но в случае с таким продуктом, как FuelBand, для потребителей гораздо важнее то, какое устройство точнее соберет данные и предоставит лучшую аналитику. Другими словами, данные и аналитика определяют приобретение продукта. Да, сам по себе физический продукт может наличествовать, но на самом деле Nike продает, а потребители покупают данные и аналитику.
Nike превращается в производителя пригодных для ношения технологий и аналитических потребительских товаров. Со временем компания начнет вставлять датчики в обувь, футболки, перчатки, другую свою продукцию, и товары будут работать вместе, чтобы формировать расширенный набор аналитики как для потребителей, так и для Nike.
Это важный и глубинный сдвиг. Мы имеем дело с физическим продуктом, который покупается не ради присущих ему свойств собственно физического продукта. Признавая это, Nike разворачивает свой бизнес лицом к новому поколению продуктов. Чтобы добиться с ними успеха, компании пришлось нанимать веб-разработчиков и дизайнеров высокотехнологичной электроники. А вдобавок к ним – профессиональных аналитиков для разработки отчетности и аналитики, а также ИТ-специалистов для создания систем хранения данных, Такие продукты, как FuelBand, требуют широкого спектра навыков, отличных от тех, которые необходимы для производства традиционной спортивной одежды.
В этом примере я сосредоточился на персональных устройствах для проверки физической формы, однако аналогичная концепция применяется и в других отраслях. Автомобили, самолеты, тракторы, ветряные турбины и грузовики снабжаются встроенными датчиками. Потребители начинают все шире использовать данные, собираемые сенсорными системами, в самых различных целях. Например, при выборе модели автомобиля, если разница между предложениями невелика, то решающее значение может иметь поставляемый вместе с машиной пакет аналитических услуг.
Такой сдвиг с собственно физического продукта на предоставляемые им аналитику и данные несет с собой как новые возможности, так и риски. Но в сегодняшнем мире бизнес нельзя вести по старинке. Данные и аналитика скорее всего приведут в бизнесе ко множеству перемен.
Преобразующая сила операционной аналитики
Появление новых данных и аналитики обусловит глубокие преобразования в некоторых отраслях. Особенно там, где в прошлом ни данные, ни аналитика не играли большой роли. Это подтверждает множество примеров, однако я предлагаю сосредоточиться на отрасли, которая уже созрела для перемен, – на образовании.
В настоящее время здесь все еще используется модель, которая сложилась десятки и даже сотни лет назад. Мы берем детей, по воле случая родившихся примерно в одно время, и – независимо от их уровня развития и подготовки (за редким исключением) – сводим вместе в одном классе. Так, все девятилетние дети учатся в третьем классе и проходят одинаковую программу независимо от того, насколько хорошо или плохо они усваивают материал. Вместо того чтобы отходить от этой модели, Соединенные Штаты лишь еще больше ужесточают правила в отношении программы каждого года школьного обучения.
Но в эпоху больших данных и аналитики почему бы не разрешить детям самим выбирать, с какой скоростью они будут изучать материал? Разве не повысим мы у них интерес к учебе, если учителя превратятся из пересказчиков обязательного материала в помощников, которые будут отвечать на вопросы учеников и помогать им? Изучая материал в собственном темпе, школьники смогут обращаться к учителям за помощью в любое время. Некоторые образовательные организации, такие как Khan Academy и Coursera, уже применяют такой подход. Они размещают учебные материалы онлайн, а пользователи смотрят видеоуроки и проходят тесты, чтобы проверить качество усвоения материала.
Почему бы нам не использовать возможности данных и аналитики, чтобы ученики постоянно обучались с выбранной ими скоростью? И причем каждый день с разного этапа обучения? Например, чтобы окончить третий класс, пусть школьнику по-прежнему нужно будет пройти всю обязательную учебную программу, но почему бы при этом ему не выполнять домашние задания за пятый класс? Если учащийся усваивает весь необходимый материал и успешно сдает тесты, то имеет ли значение, в каком году он родился и какой путь избирает для себя в обучении?
Будьте готовы к тому, что аналитика преобразит бизнес-модели
Некоторые отрасли уже внедрили аналитику и соответственно изменили способы ведения бизнеса, но другие продолжают работать так же, как работали десятилетия тому назад. Чем сильнее отстает отрасль, тем больше в ней накапливается потенциал для подрывных (и притом положительных) перемен, которые принесет с собой внедрение операционной аналитики.
Именно данные и аналитика позволяют осуществить этот переход. Можно с точностью отследить, какие учебные видеоматериалы просмотрел каждый учащийся, какие задания и контрольные тесты он выполнил и насколько хорошо. Можно с легкостью определить, какие темы ему следует пройти еще раз, поскольку аналитика выявит затруднения не только с решением конкретной задачи, но и с усвоением учебной темы в целом.
Благодаря быстрой аналитической обработке каждого ответа и столь же быстрому выявлению шаблона, определившего выполнение теста, учащемуся можно немедленно предложить нужный ему вспомогательный материал. Собирая и анализируя данные на очень детализированном уровне, операционная аналитика ненавязчиво поможет учащемуся получить знания, предоставив при этом свободу действий и обеспечив изучение необходимого материала в полном объеме.
Помню, как я откровенно скучал в школе. Более того, из-за ошибки при передаче сведений о пройденных мною в старших классах предметах мне пришлось в колледже повторно их изучать. В результате я целый семестр был вынужден слушать, как преподаватель излагал уже знакомый мне материал, и проходить тесты, которые мог бы сдать в первый же день. При этом я не мог показать свои знания и избавить себя от бесполезной траты времени. Применение операционной аналитики для управления процессом обучения и отслеживания успеваемости учащихся может до неузнаваемости изменить сферу образования в ближайшие годы.
Взгляд на операционную аналитику в перспективе
Операционная аналитика выходит за рамки традиционной аналитической практики, однако это вовсе не означает, что уроки прошлого не имеют никакого значения. На протяжении всей книги я буду обращать внимание на постоянство многих основных принципов, сохраняющих свою значимость. В этом разделе мы рассмотрим несколько важных тем, которые позволят нам взглянуть на операционную аналитику в перспективе.
Качество и актуальность данных важны как всегда
Качество и актуальность данных всегда имели решающее значение для аналитических процессов. При превращении традиционной аналитики в операционную эти свойства приобретают еще большую значимость. Когда процесс использует данные, полученные несколько секунд назад, чтобы принять решение за несколько секунд, данные должны быть актуальными и точными. Автоматизированный процесс принятия решений при помощи операционной аналитики практически не оставляет возможностей для отслеживания и устранения ошибок в данных.
У меня есть друг, работающий в крупной логистической компании. Я не буду называть ее здесь, поскольку аналогичный вопрос встает и перед многими другими организациями. Мой друг рассказывал о трудностях, которые приходится преодолевать его компании при выработке маршрутов для своих водителей. И главным источником проблем является качество картографических данных.
Вспомните о своем опыте использования GPS-навигаторов или других распространенных картографических приложений. Вы же замечали, что зачастую они приводят вас не совсем туда, куда нужно? Например, согласно официальному адресу, отель располагается на Мейн-стрит, а вот въезд на парковку находится за углом на Элм-стрит. Навигационное приложение приведет вас на Мейн-стрит, после чего вам придется думать, как добраться до парковки.
Такая небольшая ошибка вызывает не более чем досаду, когда вы пытаетесь добраться до ресторана или найти магазин. Потерять однажды минуту-другую не страшно. Однако это крайне разорительно для логистической компании, тысячи водителей которой постоянно сталкиваются с подобной дезориентацией сотни раз в день. Поэтому в компании моего друга существует большая команда, которая занимается обновлением базы картографических данных на основе новейшей информации, сообщаемой водителями.
Не экономьте на качестве!
Качество данных всегда имело важнейшее значение, но в мире операционной аналитики оно наиважнейшее. Автоматизированный и оперативный характер процессов оставляет мало возможностей для выявления и устранения ошибок в данных. Данные должны быть безупречными.
Сотрудники картографического отдела принимают во внимание всё. Так, они отмечают в базе данных, что въезд на парковку находится за углом от центрального входа в отель. Если отель переносит въезд на парковку в другое место из-за проблем с дорожным движением, они немедленно обновляют информацию. Типичное навигационное приложение приводит вас на улицу перед входом в здание. Однако в сельской местности дом может находиться метров на 800 в сторону да еще по грязной дороге. Для доставки груза на дом водителю придется потратить дополнительные пять минут на дорогу туда и обратно, поэтому алгоритмы должны учесть этот факт при составлении маршрута. Если логистическая компания не будет обладать такими актуальными и точными данными, она будет нести миллионы долларов убытков из-за снижения производительности. Для того чтобы аналитическая программа могла оптимизировать маршруты для водителей, компания уделяет усиленное внимание получению правильных данных.
Легко представить, как неверные данные могут пустить под откос операционную аналитику. Это возвращает нас к вопросу о том, почему организация не может перепрыгнуть через традиционную аналитику и начать с нуля внедрение операционной аналитики. Значительная часть операционной аналитики по-прежнему состоит в сборе необходимых данных и проверке их качества. Аналитика всегда была и будет оставаться дисциплиной, которую определяет принцип «мусор на входе дает мусор на выходе». Разница при переходе от традиционной к операционной аналитике состоит в том, что у вас остается гораздо меньше времени и возможностей для проверки достоверности данных, прежде чем будут приняты решения и предприняты действия. Качество данных должно соответствовать очень высоким стандартам, иначе ошибки в данных неизбежно приведут к ошибкам в анализе, а затем и в решениях. К тому моменту, когда ошибка в данных будет обнаружена, она уже может причинить вред.
Операционная аналитика задушит творчество?
Некоторые люди ставят под сомнение связь аналитики с творчеством. Когда она проникнет в организацию, не задушит ли аналитика творчество? Другими словами, передавая все больше решений автоматизированным компьютерным алгоритмам, не исключим ли мы из бизнеса креативность и человеческий фактор?
Но я утверждаю, что все обстоит с точностью до наоборот. Я считаю, что операционная аналитика способствует творчеству. Дело в том, что после принятия автоматизированных решений очень легко отследить их эффективность. Это, в свою очередь, позволяет организациям протестировать, что работает, а что нет. Вместо того чтобы сначала проводить творческий и продуктивный мозговой штурм, а затем выбирать всего один-два варианта действий, которые сочтены наиболее приемлемыми, аналитика позволяет протестировать много идей, а затем двигаться дальше на основе полученных результатов. Чтобы придумать все эти варианты, по-прежнему требуется креативный подход. Однако благодаря аналитике можно точнее оценить потенциал каждой творческой идеи и снизить риск путем экспериментирования с ней. Именно этим и занимаются постоянно веб-сайты.
Высвобождайте дух творчества
Аналитика должна высвобождать дух творчества, а не подавлять его. Благодаря тому что креативные идеи можно протестировать путем экспериментов и применения аналитики, организация получает возможность проверить гораздо больше, чем в прошлом, творческих предложений.
При посещении таких ведущих веб-сайтов, как eBay или Amazon, можно почти с полной уверенностью ожидать, что при просмотре каждой страницы подвергнешься какому-либо тестированию. Оно может быть совсем простым, как определение цвета баннера наверху страницы, размещение двух или трех объявлений, длинное или короткое описание продукта. Пользователи никогда не знают, какая часть страницы является стандартной, а какая используется для тестирования, и в этом суть. Те, кто отвечает за работу сайта, проводят такие небольшие эксперименты все время. Таким образом, компании могут быстро тестировать любые креативные идеи и выявлять выигрышный вариант фактически без риска и с минимальными затратами.
Внедрение аналитики и превращение ее в операционную действительно способно высвободить больше времени для творчества. Создайте передовые операционно-аналитические процессы и переложите на них принятие элементарных повседневных решений. Тем временем сотрудники могут расслабиться и заняться разработкой замечательных идей. Таким образом, сбор и анализ данных создадут благоприятные условия для творчества и инноваций в организации, а об удушении и речи не будет.
Многие концепции операционной аналитики отнюдь не новы
В завершение этой главы давайте рассмотрим пример того, как классические, проверенные временем аналитические принципы применимы и в операционной аналитике. Многие ее концепции не несут в себе ничего нового, хотя на первый взгляд могут казаться сложными и даже безумными. Зачастую они представляют собой всего лишь новейшее логическое развитие давно применяемых и самых лучших методов. Новы же скорость, своевременность и автоматизированный характер процессов операционной аналитики, а лежащие в их основе аналитические концепции давно известны.
Мой любимый пример обновленного применения старых концепций – это веб-кастомизация и оптимизация ключевых слов. Данные темы кажутся новыми, поскольку еще 20 лет назад не существовало никаких веб-страниц, не говоря уже о возможности кастомизировать эти страницы сотнями разных способов в текущем режиме. Однако концепции, лежащие в основе адаптации веб-страниц и оптимизации ключевых слов, существовали и прежде.
Этот замечательный пример привел мне европейский журналист во время нашего с ним интервью. Он рассказал мне о своем знакомом, который проработал в газетной индустрии несколько десятилетий. Четверть века назад во время подготовки к выпуску ежедневной газеты нередки были споры о том, какие статьи следует разместить наверху полосы, а какие в ее «подвале», какие лучше выбрать заголовки и т. д. Благодаря своему богатому опыту этот человек всегда мог предложить хорошие идеи по поводу заголовков и размещения статей.
Опыт же помогал газетчику тем, что на протяжении многих лет он лично собирал и анализировал данные о том, какие материалы и какие заголовки продавались лучше всего в регионе, где распространялась газета. Некоторые из этих данных он записывал, но бо́льшую часть держал у себя в голове. Сам того не осознавая, он фактически занимался оптимизацией ключевых слов и макетов газетных полос. Его логика, методы и мыслительные процессы были аналогичны тем, которые сегодня применяются в веб-пространстве. Разумеется, он применял куда более простой метод, но следовал тем же самым фундаментальным принципам. Таким образом, важно отметить, что значительная часть современной аналитики является естественным продолжением того, что делалось в прошлом, с той лишь разницей, что сегодня применяются гораздо более изощренные аналитические методы. То же относится и к операционной аналитике.
Подведем итоги
Наиболее важные положения этой главы:
• Операционная аналитика совершает «промышленную революцию» в области аналитики. Она выводит аналитику за традиционные рамки применения к операционным проблемам.
• В последние десятилетия организации совершили переход от описательной аналитики и отчетности к прогностической аналитике. Операционная аналитика идет еще дальше и делает аналитику предписывающей.
• Операционная аналитика представляет собой интегрированные автоматизированные процессы принятия решений, которые предписывают и выполняют действия в рамках «времени принятия решения».
• Добиться успеха в операционной аналитике невозможно без прочной основы в виде традиционной аналитики.
• Эпоха Аналитики 1.0 представлена традиционным подходом к аналитике, когда внимание сосредоточивалось на пакетной обработке внутренних структурированных данных.
• Эпоха Аналитики 2.0 ознаменована взлетом больших данных, появлением новых типов данных и аналитических методов, использованием внешних источников данных.
• Эпоха Аналитики 3.0 сделала возможной применение операционной аналитики. Взяв все лучшее из эпох Аналитики 1.0 и Аналитики 2.0, она выработала целостный аналитический подход.
• Всё в большей степени принятие решения о покупке определяет, наряду с физическими характеристиками продукта, поставляемая вместе с ним аналитика.
• Границы между отраслями стали размываться после того, как компании внезапно осознали, насколько выгодно встраивать высокотехнологичные датчики в свою продукцию и создавать аналитику на основе полученных данных.
• Ввиду автоматизированного и стремительного процесса принятия решений посредством операционной аналитики качество данных становится как никогда важным.
• Аналитика поощряет творчество, а не душит его. Сегодня можно свободно тестировать творческие идеи с минимумом затрат.
• Операционная аналитика в значительной степени основана на старых концепциях, которые она выводит на новый уровень.