Игра Белла
В комплект игры входят два одинаковых на вид ящика, как показано на рис. 2.1. К каждому из них прилагается джойстик и дисплей. В состоянии покоя джойстик всегда находится в вертикальном положении. Через секунду после перевода джойстика в положение «вправо» или «влево» на дисплее появляется результат. Такие результаты двоичны, то есть могут принимать только два значения: либо 0, либо 1. Компьютерщики сказали бы, что результаты представляют собой биты информации. Для каждого ящика, или, если угодно, прибора, результаты выглядят произвольными.
Перед началом игры Алиса и Боб берут по ящику, сверяют часы и затем удаляются друг от друга на некоторое расстояние. Ровно в девять утра и затем в каждую следующую минуту участники наклоняют свои джойстики в ту или иную сторону и аккуратно записывают показания, которые отображаются на дисплее, – время и результат собственного выбора. Важно, чтобы выбор правого или левого направления в каждую минуту был абсолютно свободным и независимым для каждого из участников. В частности, им не разрешено придерживаться одного и того же выбора, равно как и предварительно договариваться между собой. Важно также, чтобы ни один участник не знал о том, какое направление выбирает другой. Заметьте, наши друзья не жульничают, ведь они и вправду хотят понять, как работают приборы для игры Белла.
Они играют ровно до семи часов вечера, получив к концу дня 600 точек данных (примерно по 150 для каждого из случаев: лево-лево, лево-право, право-лево и право-право). Вечером они встречаются, чтобы подсчитать очки и получить общий итог игры.
Правила подсчета таковы:
1. Каждый раз, когда Алиса наклоняет джойстик влево, или Боб наклоняет джойстик влево, или оба они наклоняет джойстик влево, и при этом показания на дисплеях совпадают, участники получают одно очко.
2. Каждый раз, когда Алиса и Боб наклоняют джойстик вправо, и при этом показания на дисплеях различаются, участники получают одно очко.
Общий итог игры рассчитывается так:
• сначала для каждой из четырех комбинаций выбора (лево-лево, лево-право, право-лево и право-право) вычисляется коэффициент удачных попыток. Для этого количество полученных очков делится на общее количество попыток и затем все четыре коэффициента складываются. Максимально возможный результат игры равен 4, так как есть четыре варианта выбора и по каждому показатель успеха не превышает 1. Результат S должен означать, что Алиса и Боб выиграли S раз из 4. Заметим, что результат является средним и может быть принимать любое значение от 0 и 4. К примеру, результат 3,41 означает, что Алиса и Боб в среднем выиграли 3,41 раза из 4 или 341 раз из 400;
• мы увидим, что очень просто устроить ящики так, чтобы участники получали общий результат, равный 3. Поэтому иногда, говоря, что они победили в игре Белла, мы будем иметь в виду, что они выигрывали чаще, чем 3 раза из 4.
Для лучшего понимания этой странной игры давайте вообразим, что Алиса и Боб не записывают фактические показания с дисплеев, а просто выдумывают их. Другими словами, они независимо друг от друга выдают случайный результат. В этом случае все четыре показателя удачных попыток к неудачным будут равны 1/2. К примеру, если половину отведенного времени Алиса и Боб записывают один и тот же результат, а вторую половину – противоположный, вне зависимости от направления наклона джойстика, то результатом игры будет 4 × ½ = 2. Чтобы получить счет больше 2, ящики Алисы и Боба не могут быть полностью независимыми друг от друга – они должны быть как-то связаны, скоординированы друг с другом, чтобы выдавать коррелированные результаты.
Если пойти чуть дальше, можно рассмотреть другой пример, в котором оба ящика всегда выдают одинаковые значения показаний, равные 0, невзирая на положение джойстика. В этом случае выбор Алисы и Боба никак не влияет на результат. Несложно подсчитать, что для каждой из трех комбинаций: «лево-лево», «лево-право» и «право-лево» – коэффициент удачных попыток будет составлять 1, а для комбинации «право-право» – 0. В этом случае общий счет будет равен 3.
Перед тем как рассмотреть принцип работы приборов, добавим чуть-чуть абстракции. Это подведет нас к самой сути понятия нелокальности.