Книга: Лестница жизни: десять величайших изобретений эволюции
Назад: Глава 4. Сложная клетка
Дальше: Глава 6. Движение

Глава 5. Секс

 

Ирландский драматург Джордж Бернард Шоу просто притягивал к себе истории. Рассказывают, например, что на одном из приемов Шоу стала оказывать знаки внимания некая красавица-актриса1. “Нам с вами стоило бы завести ребенка, — заявила она, — он унаследовал бы мою красоту и ваш ум”. На это Шоу возразил: “Но что если он унаследовал бы мою красоту и ваш ум?”
Опасение Шоу было вполне резонным. Половое размножение — удивительный механизм, генерирующий случайные сочетания успешных генов. Может быть, лишь возможности полового процесса как генератора случайных комбинаций и могут привести к появлению такого человека, как Шоу, или такого, как та красавица-актриса. Но стоит половому процессу выстроить удачную комбинацию генов, как он тут же рассыпает ее. Создатели печально известной, хотя в основном безвредной организации, прозванной “Нобелевским банком спермы”, упустили из виду именно это. Когда биохимику Джорджу Уолду предложили сдать свою заслуженную сперму в этот банк, он отказался, отметив, что просителям была бы нужна скорее не его сперма, а сперма таких людей, как его отец, бедный портной-иммигрант, чьи чресла, как ни странно, оказались источником гениальности. “А что дала миру моя сперма? — сокрушался нобелевский лауреат. — Двоих гитаристов!” Гениальность и в целом интеллектуальный потенциал действительно наследуются (точнее, на их развитие гены оказывают влияние, хотя и не строго его определяют), но половое размножение делает из наследования непредсказуемую лотерею.
Многие из нас согласятся, что главное волшебство секса (то есть полового размножения) состоит как раз в его способности генерировать изменчивость, всякий раз извлекая из небытия уникальных существ, будто кроликов из шляпы. Но если взглянуть на этот процесс с точки зрения специалистов по математической генетике, окажется, что изменчивость ради изменчивости — это отнюдь не всегда хорошо. Зачем ломать удачную комбинацию? Почему бы просто ее не клонировать? Многим людям идея клонировать Моцарта или Шоу покажется попыткой “поиграть в Бога”, опасным проявлением непомерной человеческой гордыни, но генетиков смущает не это. Они обращают внимание на несколько более приземленную вещь: бесконечная изменчивость, порождаемая сексом, может приводить к страданиям, болезням и безвременной смерти, в то время как простое клонирование позволяет от всего этого застраховаться. Благодаря обеспечиваемому клонированием сохранению сочетаний генов, выкованных в горниле отбора, оно часто будет самым надежным выбором.
Приведем всего один пример: передача серповидноклеточной анемии — тяжелой наследственной болезни, при которой красные кровяные тельца принимают жесткую серповидную форму и с трудом протискиваются сквозь тонкие капилляры. Эту болезнь вызывает наследование двух “плохих” копий определенного гена. Вы можете спросить, почему естественный отбор не уничтожил такие копии. Дело в том, что наличие одной подобной копии оказывается даже полезным. Человек, унаследовавший от родителей одну “хорошую” и одну “плохую” копию этого гена, не только не заболеет серповидноклеточной анемией, но с меньшей вероятностью заболеет малярией — болезнью, тоже поражающей красные кровяные тельца. Наличие лишь одной “плохой” копии гена серповидноклеточной анемии приводит к изменениям в мембране красных кровяных телец, мешающих проникновению в них возбудителей малярии, но не придает этим тельцам опасную серповидную форму. Только клонирование (разновидность бесполого размножения) может позволить неизменно передавать потомкам этот полезный “смешанный” генотип. Половое же размножение неминуемо будет приводить к перетасовыванию генов. Если, например, у обоих родителей смешанный генотип, то он достанется примерно половине их детей, четверть их получит две “плохих” копии гена и будет страдать серповидно-клеточной анемией, а еще четверть получит две “хороших” копии и с высокой вероятностью заболеет малярией (по крайней мере, если будет жить в одной из обширных зон планеты, где есть комары, переносящие это заболевание). Иными словами, повышение изменчивости ставит половину потомства под угрозу. Секс может оказывать на жизнь следующего поколения непосредственное губительное воздействие.
Это далеко не единственный недостаток секса. Полный список должен, казалось бы, отвратить любого разумного человека от самой идеи полового размножения. У Джареда Даймонда есть книга “Почему нам так нравится секс?” Как ни странно, Даймонд не дал в ней ответа на вынесенный в заглавие вопрос. Должно быть, ответ представлялся ему очевидным: если бы секс нам не нравился, никто бы в здравом уме не стал им заниматься. И где бы мы все тогда были?
Давайте представим себе, что Шоу все-таки решил рискнуть и попытаться завести ребенка, которому достался бы его ум и красота той актрисы. Давайте также представим (погрешив против справедливости ради информативности примера), что актриса, о которой идет речь, соответствовала расхожему представлению о женщинах ее профессии и страдала каким-то венерическим заболеванием, скажем сифилисом. Ее встреча с Шоу произошла еще до начала эпохи антибиотиков, когда сифилис перестал внушать ужас обездоленным солдатам, музыкантам и артистам — регулярным клиентам столь же обездоленных женщин легкого поведения. В тот век у всех на слуху были примеры Ницше, Шумана и Шуберта, которых поразило безумие, и наказание за половую распущенность было вполне реальным. Кроме того, средства лечения, популярные в те времена, такие как мышьяк или “металл Меркурия” (ртуть), не были приятнее самой болезни. Как тогда говорили, за ночь в объятиях Венеры можно расплатиться, проведя остаток жизни рука об руку с Меркурием.
Разумеется, сифилис — лишь одна из многих неприятных и часто смертельных болезней, передающихся половым путем. К таким болезням относится и СПИД, заболеваемость которым во многих странах мира продолжает стремительно расти. Эпидемия СПИДа в Африке к югу от Сахары — поистине ужасное явление. На момент написания этих строк больше 24 миллионов африканцев заражены ВИЧ, а доля зараженных среди молодежи составляет около 6 %. В странах, где ситуация особенно тяжелая, доля зараженных гораздо выше 10 %, в связи с чем уже больше десяти лет средняя продолжительность жизни продолжает снижаться. Хотя положение, несомненно, усугубляется недостаточными возможностями здравоохранения, бедностью и другими смертельными заболеваниями, такими, как туберкулез, основную проблему по-прежнему составляет секс без презервативов2. Но каковы бы ни были причины этого бедствия, сами его масштабы уже позволяют понять, насколько это сомнительное занятие — секс.
Давайте вернемся к Бернарду Шоу. Результатом его встречи с актрисой мог оказаться ребенок, вобравший худшие качества своих родителей, плюс тяжелая болезнь и даже безумие самого Шоу. И это притом, что у Шоу был и целый ряд преимуществ перед значительной частью других представителей человечества, Когда он встретился с той актрисой, он был уже богат и знаменит, что, разумеется, притягивало к нему не только апокрифические истории, но и женское внимание. У него, по крайней мере, была возможность согласиться на секс и получить шанс, что какие-то из его генов потекут дальше по реке времени. В отличие от многих других людей, он не был вынужден страдать и мучиться в поисках подходящего или вообще хоть какого-нибудь полового партнера.
Я не хочу погружаться здесь в сложные вопросы, связанные с социальными аспектами секса. Вполне очевидно, что поиск партнера (значит, и передача генов половым путем) требует некоторых затрат. Я имею в виду не финансовые затраты (хотя их остро ощущает каждый, кто оплачивает счет в ресторане на первом свидании или лишается части собственности в результате развода), а затраты времени и душевных сил на безуспешные поиски, широкое распространение которых очевидно из любой газеты с брачными объявлениями, а также из расплодившихся в последнее время интернет-сайтов знакомств. Но истинные, биологические затраты на секс сложно оценить на примере человеческого общества, потому что у нас они скрыты глубоко под наслоениями культуры и правил поведения. Если вы сомневаетесь в существовании биологических затрат на секс, вспомните о хвосте павлина. Великолепные перья его хвоста, этот символ плодовитости и приспособленности их обладателя, явно несут угрозу для выживания, как и иные заметные признаки, демонстрируемые во время брачных игр множеством других птиц. Возможно, ярчайший из подобных примеров нам дают колибри. При всем своем великолепии 340 видов колибри могут служить наглядным воплощением затрат на поиски полового партнера — не самих колибри (хотя им, конечно, это тоже нелегко дается), а цветковых растений, которые они опыляют.
Растения совершенно не производят впечатления организмов, ведущих бурную половую жизнь, но подавляющее большинство из них именно таково. Очень немногие представители царства растений, например одуванчики, практикуют воздержание. Абсолютное большинство находит способы заняться сексом, и особенно эффектно это проделывают изысканные цветковые растения, захватившие сушу около восьмидесяти миллионов лет назад и украсившие монотонные зеленые леса волшебными разноцветными полянами. Первые цветковые растения появились еще в позднем юрском периоде, примерно 160 миллионов лет назад. Однако им пришлось надолго отложить покорение мира, совершить которое им в итоге позволили расплодившиеся насекомые-опылители, например пчелы. Цветы для растений — сплошные затраты. Они должны привлекать опылителей окраской и формой, вырабатывать сладкий нектар, чтобы опылителям было зачем их посещать (а по массе нектар на четверть состоит из сахара), и распределяться должным образом — не слишком близко (чтобы близкородственное скрещивание не делало секс бессмысленным), но и не слишком далеко друг от друга (иначе опылителю будет сложно передать пыльцу одного растения другому — его половому партнеру). После того как растение выберет себе опылителя, оно эволюционирует с ним в тандеме, каждый участник которого что-то дает другому, но и требует от него, в свою очередь, некоторых затрат. При этом сложно найти затраты более обременительные, чем те, что несут крошечные колибри, давая неподвижным растениям возможность вести половую жизнь.
Колибри приходится быть крошечными, потому что более крупные птицы не смогли бы зависать неподвижно перед глубоким горлышком цветка, работая крыльями с частотой пятьдесят взмахов в секунду. Сочетание малых размеров и колоссальной скорости обмена веществ, которая только и может позволить зависать в полете, означает, что колибри должны почти непрерывно заправляться топливом. Каждый день они добывают нектар, вес которого составляет половину веса их собственного тела. Для этого они посещают сотни цветков. Если колибри надолго (больше чем на пару часов) остаются без пищи, они впадают в похожее на кому оцепенение: частота сердцебиения и дыхания снижается в несколько раз по сравнению с нормальной для сна, а температура тела уходит в свободное падение. Колдовское зелье растений заставило их жить в постоянной зависимости, неустанно перелетая с цветка на цветок и разнося пыльцу или же впадая в кому и рискуя погибнуть.
С сексом связана еще одна, еще более серьезная загадка. Затраты на поиски партнера — ничто по сравнению с затратами на само его наличие, в результате чего за секс приходится платить двойную цену. Фанатичные феминистки, которых возмущает само существование мужчин, не так уж и неправы. На первый взгляд, затраты на мужчин действительно очень уж велики, и женщину, решившую проблему непорочного зачатия, можно было бы по праву назвать мадонной. Хотя некоторые мужчины пытаются оправдать свое существование, взваливая на себя бремя заботы о детях или материального обеспечения семьи, этого нельзя сказать о многих не столь достойных представителях как человеческого рода, так и животного мира, заботящихся только о том, чтобы им было с кем совокупляться. И все же, несмотря на это, их оплодотворенные партнерши рожают столько же сыновей, сколько и дочерей. Ровно половина их усилий тратится на то, чтобы приносить в мир неблагодарных потомков мужского пола, самим своим существованием создающих все ту же проблему. Представительница любого вида, которому не свойственна забота отцов о детях, научившаяся производить потомство без участия противоположного пола, вдвое повысила бы свой репродуктивный успех. Племя матерей, рождающих собственные клоны, удваивалось бы с каждым поколением и за несколько поколений полностью вытеснило бы из популяции своих сексуальных родичей. Потомки единственной размножающейся клонированием самки могли бы всего за пятьдесят поколений полностью вытеснить все организмы, размножающиеся половым путем, в популяции из миллиона особей!
Давайте рассмотрим эту проблему на клеточном уровне. При производстве клонов, то есть рождении без оплодотворения, одна клетка делится на две. При половом размножении происходит совершенно противоположное. Одна клетка (сперматозоид) сливается с другой (яйцеклеткой), образуя новую клетку (оплодотворенную яйцеклетку). В итоге из двух клеток получается всего одна. Двойная цена секса проявляется и в числе генов. Всякая половая клетка (сперматозоид или яйцеклетка) передает следующему поколению всего 50 % родительских генов. Полный набор генов восстанавливается при слиянии двух половых клеток. А значит, организм, способный передавать всем своим потомкам 100 % собственных генов, должен обладать двойным превосходством перед другими. Поскольку любой клон получает от одного родительского организма вдвое больше генов, чем любой представитель потомства, произведенного половым путем, гены организмов, способных к клонированию, должны, казалось бы, быстро распространяться в популяциях и рано или поздно вытеснять гены, обеспечивающие способность к половому размножению.
Дальше — больше. Передача следующему поколению только половины собственного генетического материала открывает двери для всевозможных сомнительных махинаций, связанных с эгоистичными генами3. В ходе полового размножения любой ген, по крайней мере теоретически, имеет шанс передаться любому представителю следующего поколения с вероятностью 50 %. Однако на практике гены-мошенники могут получить преимущество, действуя в собственных интересах и передаваясь не половине, а большей доле потомков. Это не какая-то принципиальная возможность, которая на деле не реализуется. Есть множество примеров конфликтов между генами, когда паразитические гены нарушают закон, а законопослушное большинство пытается им помешать. Существуют паразитические гены, убивающие все сперматозоиды или даже всех потомков, не получивших их в наследство, и гены, делающие лишенных их потомков мужского пола стерильными, и гены, инактивирующие соответствующий ген, полученный от другого родителя, а также “прыгающие” гены, расселяющиеся по всему геному. Многие геномы, в том числе человеческий, просто нашпигованы останками “прыгающих” генов, которые когда-то размножались, расселяясь по всему геному (как мы уже убедились в главе 4). Человеческий геном — настоящее кладбище мертвых “прыгающих” генов, в буквальном смысле наполовину состоящий из их разлагающихся “трупов”. И это еще далеко не худший случай. В это трудно поверить, но геном пшеницы состоит из мертвых “прыгающих” генов на 98 %. При этом у многих организмов, размножающихся клонированием, геномы гораздо меньше и, судя по всему, они отнюдь не подвержены подобным нападкам со стороны паразитических генов.
В общем, складывается ощущение, что секс как способ размножения должен иметь очень мало шансов на существование. Изобретательный биолог, может, и предложил бы некие особые условия, в которых секс оказался бы полезен, но большинству из нас на первый взгляд может показаться, что такой нелепой причуды, как секс, вообще не должно существовать. В отличие от клонирования, за секс приходится платить двойную цену. Он способствует размножению эгоистичных генов-паразитов, могущих калечить целые геномы. Он сопряжен с бременем поисков партнера, способствует передаче ужасных венерических заболеваний, и, наконец, он методично разбивает все самые успешные сочетания генов.
И все же секс, как это ни удивительно, свойствен почти всем сложным формам жизни. Почти все эукариотические организмы (то есть состоящие из клеток, имеющих ядро; см. главу 4) на определенном этапе своего жизненного цикла занимаются сексом, а подавляющее большинство растений и животных размножаются исключительно половым путем, то есть только с помощью секса. Это не может быть случайностью. Бесполые виды, размножающиеся клонированием, встречаются редко, но многие из них, например одуванчики, существуют прямо у нас под носом. Как ни странно, почти все виды, состоящие из клонов, возникли сравнительно недавно: обычно лишь несколько тысяч, а не несколько миллионов лет назад. Они представляют собой крошечные веточки на древе жизни, и они обречены погибнуть. Многие виды переходят к размножению путем клонирования, но они почти никогда не достигают зрелого, по меркам видов, возраста и вскоре вымирают, не оставив потомства. Известно очень немного древних клонов — размножающихся клонированием видов, возникших десятки миллионов лет назад и давших начало группам из множества близкородственных видов. Те, кому это удалось (например, бделлоидные коловратки), стали настоящими биологическими знаменитостями, целомудренными исключениями в мире, помешанном на сексе, напоминающими монахов, проходящих через район красных фонарей.
Если секс можно считать странной причудой, экзистенциальной нелепостью, то отказ от секса оказывается еще хуже, ведь он в большинстве случаев приводит к вымиранию. А значит, у секса должны быть и серьезные преимущества, с лихвой перевешивающие безрассудство этого занятия. Эти преимущества удивительно трудно оценить, что сделало проблему эволюции секса настоящей царицей среди эволюционных проблем, которые занимали ученых на протяжении значительной части XX века. Вполне возможно, что без секса сложные жизненные формы крупных размеров просто невозможны, и если бы его не было, мы все были бы обречены разлагаться из поколения в поколение, подвергаясь постепенной порче, как дегенеративная К-хромосома. Как бы там ни было, именно секс сделал из нашей некогда безмолвной планеты мир, способный к самоанализу, полный неустанно самовоспроизводящихся существ (мне вспоминается “здесь слизких тварей миллион” из поэмы Кольриджа о старом моряке), полный радости и торжества. Мир без секса был бы миром без песен мужчин и женщин, как, впрочем, и без песен птиц и лягушек, без ярких благоуханных цветов, без гладиаторских боев, без поэзии, без любви, без восторга. Это был бы не очень-то интересный мир. Секс, несомненно, занимает почетное место одного из величайших изобретений жизни. Но почему и как он был изобретен?
Одним из первых о пользе секса задумался Дарвин, искавший, как всегда, прагматичное объяснение этого феномена. Главной пользой, которую приносит секс, он счел гетерозис — повышенную жизнеспособность гибридов, проявляющуюся в том, что потомки двух не состоящих в близком родстве родителей, как правило, оказываются сильнее, здоровее и лучше приспособленными и, кроме того, реже детей двух близких родственников страдают от таких врожденных болезней, как гемофилия и болезнь Тея — Сакса. Примеров тому известно множество. Чтобы оценить вред избытка близкородственных браков, достаточно было вспомнить представителей древних европейских династий вроде Габсбургов (среди которых хватало больных и сумасшедших). Дарвин считал, что главное в сексе — это производство потомства неродственными родителями, что, впрочем, не помешало ему жениться на своей двоюродной сестре, Эмме Веджвуд, этом “образце добродетели”, и стать отцом десятерых ее детей.
У дарвиновского объяснения было два больших достоинства, но был и серьезный недостаток: Дарвин ничего не знал о генах. Достоинства же состояли в том, что гетерозис незамедлительно приносит пользу потомству, а также в том, что это выгодно прежде всего отдельному организму: дети неродственных родителей чаще оказываются здоровыми и не умирают в детстве, что позволяет их родителям передавать больше генов следующему поколению. Это прекрасное объяснение в духе классического дарвинизма, имеющее к тому же более общее значение, к которому мы еще вернемся. (Естественный отбор работает здесь с отдельными организмами, а не с большими группами организмов.) Проблема в том, что на самом деле здесь объясняется неродственное скрещивание, а не секс вообще. Поэтому это еще далеко не все.
По-настоящему осмыслить механизм секса удалось только через несколько десятков лет, в начале XX века, когда были переоткрыты знаменитые закономерности, выявленные монахом Грегором Менделем в ходе опытов по скрещиванию сортов гороха. Должен признаться, что в школе законы Менделя всегда казались мне до невообразимого скучными, о чем я теперь вспоминаю с некоторым стыдом. Тем не менее, я все-таки думаю, что в основах генетики проще разобраться, оставив эти законы в стороне, потому что они стали известны в то время, когда о строении генов и хромосом еще ничего толком не было известно. Поэтому давайте сразу перейдем к представлению о хромосомах как о последовательностях генов, и мы сможем лучше понять, что же собой представляет секс, то есть половое размножение, и почему дарвиновского его объяснения совершенно недостаточно.
Первым этапом полового размножения, как мы уже знаем, оказывается слияние двух половых клеток: сперматозоида и яйцеклетки. Каждая из этих клеток привносит в этот союз одинарный набор хромосом, передавая оплодотворенной яйцеклетке удвоенный их набор. Все копии одних и тех же генов, содержащиеся в двойном наборе в двух экземплярах, редко совпадают полностью, и “хорошая” копия может скрывать черты “плохой”. На этом и основано явление гетерозиса. Близкородственное скрещивание приводит к обнаружению проявлений “плохих” копий генов. На самом деле это скорее недостаток близкородственного скрещивания, чем преимущество полового размножения. Польза от неродственного скрещивания состоит в том, что две немного разные хромосомы каждой пары могут успешно “прикрывать” друг друга, но то же можно сказать и о размножении путем клонирования, при котором потомству передаются по две немного разных хромосомы каждой пары, как и при половом размножении. Таким образом, гетерозис связан с наличием двойного набора хромосом с двумя немного разными хромосомами в каждой паре, а вовсе не с сексом как таковым.
Ключом к разгадке тайны полового размножения может стать второй его этап — повторное производство половых клеток, в каждой из которых все гены содержатся в одном экземпляре. Этот этап объяснить сложнее, чем предыдущий. Процесс производства половых клеток — мейоз — представляет собой деление клеток, одновременно и изящное, и загадочное. Изящным его делает “танец” хромосом, каждая из которых находит пару, после чего они на некоторое время сжимают друг друга в объятиях, а затем расходятся в разные концы клетки. Хореография этого танца исполнена такой красоты и точности, что первые исследователи, работавшие с микроскопами, не могли отвести глаз. Они находили все новые и новые способы окрашивать препараты клеток, чтобы наблюдать хромосомы на разных этапах процесса, рассматривая получаемые картины, как рассматривают старые фотографии, изображающие исполнение акробатического танца участниками блистательной труппы. А загадочен этот танец тем, что его па отличаются намного большей замысловатостью, чем кто-либо мог ожидать от такого прагматичного хореографа, как мать-природа.
Термин “мейоз” происходит от греческого слова, означающего уменьшение. Мейоз начинается с клетки, содержащей по два экземпляра каждой хромосомы, а заканчивается половыми клетками, во всякой из которых содержится только по одному экземпляру каждой хромосомы. Это вполне логично: если в основе полового размножения лежит слияние двух клеток, из союза которых развивается новый организм с двойным набором хромосом, то проще всего сделать это, раздав каждой половой клетке по одинарному набору хромосом. Поразительно здесь то, что мейоз начинается как раз с удвоения всех хромосом, в результате чего в исходной клетке оказывается по четыре экземпляра всех генов. После этого удвоенные хромосомы каждой пары соединяются и обмениваются соответствующими друг другу участками (научный термин для этого процесса — рекомбинация), так что в итоге получаются четыре совершенно новых хромосомы, каждой из которых какие-то участки достались от одной из двух исходных хромосом соответствующей пары, а какие-то — от другой. Рекомбинация и есть самое главное в сексе. Благодаря рекомбинации ген, полученный от отца, может оказаться в половой клетке на одной хромосоме с другими генами, полученными от матери. Этот фокус может проделываться на каждой хромосоме неоднократно, в результате чего получится, например, такая последовательность генов: отцовский — отцовский — материнский — материнский — материнский — отцовский — отцовский. Каждая из новообразованных четырех хромосом теперь уникальна. Они отличаются не только друг от друга, но также, скорее всего, и от всех когда-либо существовавших хромосом (поскольку обмен участками происходит в случайном порядке и обычно в разных местах). Наконец, исходная клетка делится пополам, а дочерние клетки делятся еще раз, образуя выводок из четырех “внучатых” клеток, каждая с одинарным набором уникальных хромосом.
Это и есть секс, то есть половое размножение. Становится понятно, что именно делает секс: он перетасовывает гены, создавая новые их сочетания — сочетания, которых раньше, может, никогда и не было. Причем делает он это методично и по всему геному. Этот процесс напоминает тасование колоды карт, при котором старые сочетания разбиваются и каждый игрок получает на руки статистически случайный набор. Вопрос в том, зачем это нужно.
Ответ, который большинству биологов, даже нынешних, интуитивно кажется наиболее разумным, впервые дал Август Вейсман, выдающийся немецкий мыслитель и последователь Дарвина. Он предположил в 1904 году, что главное достоинство секса состоит в увеличении изменчивости, с которой может работать половой отбор. Ответ Вейсмана сильно отличается от ответа самого Дарвина, поскольку предполагает, что секс выгоден не отдельным организмам, а популяции в целом. По Вейсману, секс с равным успехом может порождать как “хорошие”, так и “плохие” комбинации генов. Хотя “хорошие” комбинации приносят их владельцу непосредственную пользу, “плохие” приносят столь же непосредственный вред. А это значит, что и суммарная польза, и суммарный вред секса для всех организмов любого поколения равны нулю. Тем не менее, доказывал Вейсман, популяции секс приносит пользу, потому что плохие сочетания генов отсеивает естественный отбор, в итоге (после смены многих поколений) оставляя преимущественно хорошие сочетания.

 

 

Распространение новых полезных мутаций среди организмов, размножающихся половым (вверху) и бесполым (внизу) путем. При половом размножении мутация, делающая из гена а ген А, и мутация, делающая из гена Ь ген В, быстро соединятся друг с другом, произведя на свет наилучший генотип АВ. В отсутствие секса А может распространяться только в ущерб В, а В — только в ущерб А. и наилучший генотип АВ может возникнуть только в том случае, если В возникнет у носителей генотипа АЬ или А возникнет у носителей генотипа аВ.

 

Разумеется, секс сам по себе не дает популяции никакой дополнительной изменчивости. В отсутствие мутаций секс просто перемешивал бы имеющиеся гены, способствуя удалению “плохих" их вариантов и фактически лишь уменьшая изменчивость. Но стоит добавить к этому уравнению немного мутаций, как сделал в 1930 году великий специалист по статистической генетике Рональд Фишер, и преимущества секса станут очевиднее. Фишер доказывал: поскольку мутации происходят сравнительно редко, разные мутации должны обычно происходить у разных организмов, точно так же, как молнии обычно не бьют два раза в одно место (хотя иногда и мутации, и молнии все-таки поражают одну и ту же цель дважды).
Чтобы пояснить мысль Фишера, давайте представим себе, как две полезных мутации возникают в популяции, размножающейся клонированием. Как они могут распространяться? Только в ущерб друг другу, а также в ущерб особям, лишенным этих мутаций. Если обе эти мутации в равной степени полезны, популяция в итоге может оказаться разделенной поровну на обладателей первой мутации и обладателей второй. Принципиально здесь то, что ни одна особь не сможет получать пользу от обеих мутаций одновременно, если только у особи, уже получающей пользу от одной мутации, не произойдет повторно и другая — как молния, ударяющая дважды в одно и то же место. Часто это будет происходить или исключительно редко, зависит от таких факторов, как частота мутаций и численность популяции, но в целом полезные мутации очень редко сходятся друг с другом в популяциях, размножающихся исключительно клонированием*. Половое же размножение способно быстро свести обе мутации вместе для принесения общей пользы. Таким образом, по Фишеру, выгода от секса состоит в том, что он позволяет сводить друг с другом новые мутации, уже вскоре после их появления наделяя ими один организм и давая естественному отбору возможность испытать их совместное влияние на приспособленность. Если новые мутации действительно повышают приспособленность, секс помогает им быстро распространиться по всей популяции, делая составляющие ее организмы более приспособленными и ускоряя ход эволюции.
Американский генетик Герман Меллер, получивший в 1946 году Нобелевскую премию по физиологии и медицине за открытие мутагенного действия рентгеновских лучей, впоследствии развил эту линию аргументации, рассмотрев действие вредных мутаций. Произведя своими руками тысячи мутаций у плодовых мушек, Меллер как никто другой понимал, что большинство мутаций вредны. Поэтому для него более глубокий вопрос заключался в том, как популяция, размножающаяся клонированием, может избавляться от подобных мутаций. Он предлагал представить, что почти у всех мушек есть по крайней мере одна-две мутации, так что “генетически чистыми” остаются лишь очень немногие. К чему это приведет? В небольшой популяции, размножающейся клонированием, это вызовет неумолимое снижение приспособленности. Проблема здесь в том, что вероятность успешного размножения зависит не только от генетической приспособленности, но и от игры случая. Представьте двух мушек, у одной из которых две мутации, а у второй — ни одной. Мушка-мутант случайно оказывается там, где много пищи, а “чистая” мушка умирает от голода. В итоге, несмотря на то, что первая мушка хуже приспособлена, она выживает и передает свои гены потомкам. А теперь представьте, что умершая от голода мушка была последней “чистой” во всей популяции и теперь у всех оставшихся мушек есть хоть одна мутация. Если у какой-нибудь мушки- мутанта не произойдет обратной мутации, что случается очень редко, приспособленность всей популяции будет на уровень ниже, чем раньше. Тот же сценарий может повторяться снова и снова, и каждый раз неумолимый храповик мутаций будет снижать приспособленность еще на один щелчок, так что рано или поздно вся популяция выродится настолько, что неизбежно вымрет. Эту последовательность событий называют храповиком Меллера.
Работа храповика Меллера зависит от случая. Если популяция очень велика, игра случая будет играть меньшую роль и статистически более вероятным будет выживание наиболее приспособленных особей. Такая популяция может не покориться “пращам и стрелам яростной судьбы”. Если скорость размножения выше, чем скорость накопления новых мутаций, то вся популяция в целом не погибнет под храповиком Меллера. С другой стороны, если популяция мала или частота мутаций высока, храповик начинает вращаться. В таких условиях популяция организмов, размножающихся клонированием, постепенно вырождается, накапливая новые и новые мутации, и рано или поздно гибнет.
Положение спасает секс, позволяющий восстанавливать поголовье “чистых” особей, сводя в одном организме не мутировавшие гены. Воспользуемся аналогией, которую предложил Джон Мейнард Смит, и представим себе, что у нас есть два сломанных автомобиля, у одного из которых не работает, предположим, коробка передач, а у другого — двигатель. Секс играет роль автомеханика, который может сделать из неповрежденных деталей этих двух неисправных машин одну исправную. Но при этом секс, в отличие от разумного механика, изготовит не только исправную машину, но и бессмысленную груду металлолома, соединив друг с другом неисправные детали. Вечная беспристрастность секса приводит к тому, что он в равной степени может быть и полезен, и вреден отдельным организмам.
Есть лишь один способ избавиться от беспристрастности секса, и его описал в 1983 году российский специалист по эволюционной генетике Алексей Кондрашов, в настоящее время профессор Мичиганского университета. Кондрашов выучился в Москве на зоолога, а затем занялся теоретическими вопросами в Пущинском научном центре. Его теория основана на двух смелых допущениях, которые по-прежнему вызывают возмущение у многих эволюционистов. Первое состоит в том, что частота мутаций несколько выше, чем предполагало большинство исследователей. Чтобы теория Кондрашова работала, у каждого организма в каждом поколении должна быть хотя бы одна вредная мутация. Второе же допущение состоит в том, что большинству организмов свойственна та или иная степень устойчивости к действию единичных мутаций. Предполагается, что наша приспособленность начинает снижаться только тогда, когда мы получаем в наследство много мутаций одновременно. Это может происходить, например, в том случае, если организм от природы обладает избыточными резервами. Раз мы в состоянии позволить себе лишиться одной почки, одного легкого и даже одного глаза (потому что резервный экземпляр соответствующего органа продолжает работать), на уровне генов у нас тоже возможно некоторое функциональное перекрывание. Для этого одну и ту же функцию должен выполнять не один ген, а больше, оберегая всю систему в целом от серьезных повреждений. Если гены действительно способны “прикрывать” друг друга, то единичная мутация не должна иметь совсем уж катастрофических последствий и теория Кондрашова может быть верна.
Что нам дают эти предположения? Первое (высокая частота мутаций) означает, что даже бесконечно большие популяции организмов, размножающихся клонированием, не защищены от храповика Меллера. Они должны неизбежно вырождаться, в конце концов приходя к “мутационному краху”. Второе предположение изящнее: секс позволяет избавляться от многих мутаций одновременно. Марк Ридли провел очаровательную аналогию, сравнив клонирование и секс с библейскими Ветхим и Новым Заветами соответственно. Мутации он уподобил грехам. Если мутации начинают происходить с частотой в одну на поколение (то есть грешниками оказываются все), то единственный способ избавить от грехов популяцию, размножающуюся клонированием, будет состоять в том, чтобы истребить ее всю: утопить во всемирном потопе, выжечь огнем и серой или поразить еще какими-нибудь казнями. Но организмам, размножающимся половым путем, если они могут без вреда для себя накапливать некоторое количество мутаций (до определенного порога невозвращения), секс позволяет собрать большое число мутаций у двух здоровых родителей и передать их единственному ребенку. Это новозаветный подход. Подобно тому, как Христос умер, взяв на себя грехи всего человечества, половое размножение позволяет передавать многие мутации, накапливающиеся в популяции, одной жертве, а затем распинать ее.
Согласно теории Кондрашова, секс позволяет предотвращать “мутационный крах” у крупных сложных организмов. Из его предположений напрашивается еще один вывод: сложные формы жизни были бы вообще невозможны без секса. Это воодушевляющий, но отнюдь не общепризнанный вывод. Оба предположения Кондрашова по-прежнему вызывают ожесточенные споры, поскольку и частоту мутаций, и характер взаимодействий между ними не так-то просто напрямую измерить. Если по поводу теории Кондрашова и сложилось общее мнение, оно гласит, что она может быть справедлива в отдельных случаях. Лежащие в ее основе предположения слишком часто не выполняются, чтобы она позволяла объяснить то изобилие секса, которое мы наблюдаем повсюду. Не позволяет она объяснить и происхождение секса у простых одноклеточных организмов, которые нисколько не стремятся быть крупными и сложными, то есть в некотором роде избавлены от нашего первородного греха.
Итак, секс любезен популяциям тем, что позволяет создавать благоприятные сочетания генов и устранять неблагоприятные. В первой половине XX века считалось, что вопрос более или менее решен, хотя сэр Рональд Фишер высказывал некоторые оговорки относительно собственной теории. В целом Фишер, как и Дарвин, полагал, что отбор действует на уровне отдельных организмов и не заботится о благе вида в целом. Однако Фишер считал, что необходимо сделать исключение для рекомбинации, которую “можно интерпретировать как нечто выработанное эволюцией на пользу видам, а не организмам”. Хотя теория Кондрашова предполагает пользу для большинства особей (лишь единицы приходится время от времени распинать), даже в этом случае непосредственные выгоды секса оказываются ощутимы лишь после смены многих поколений. Они не дают отдельным организмам никаких выгод, по крайней мере в привычном понимании.
Зажженный Фишером фитиль горел медленно, но в середине 60-х годов, когда эволюционисты начали развивать идею эгоистичных генов и искать объяснение парадоксу альтруизма, мина замедленного действия наконец взорвалась. Проблема секса занимала великих ученых, развивавших эволюционную теорию: Джорджа Уильямса, Джона Мейнарда Смита, Билла Гамильтона, Роберта Триверса, Грэма Белла, Ричарда Докинза. Стало ясно, что в живой природе мало подлинного альтруизма, что мы, по словам Докинза, лишь слепые марионетки в руках эгоистичных генов, действующих в собственных интересах. Вопрос был в том, почему, если в мире царит эгоизм, в нем далеко не всегда торжествуют жулики. Зачем организму жертвовать собственными интересами сейчас (отказываясь от размножения клонированием) ради пользы (генетического здоровья) всего вида в неопределенном будущем? Даже нам, людям, со всем нашим умением предвидеть события, не так-то просто действовать в интересах наших собственных ближайших потомков: вспомним уничтожение лесов, глобальное потепление и проблему перенаселения. Как же тогда эволюция с ее слепотой и эгоизмом могла поставить долговременную выгоду секса для популяции выше его кратковременной двойной цены со всеми вытекающими неприятными последствиями?
Один из возможных ответов таков: мы не можем избавиться от секса в связи с затруднительностью выхода эволюции на обратную дорогу. Если так, то торг о кратковременной цене секса просто неуместен. В этом объяснении и вправду что-то есть.
Я уже упоминал, что почти все виды, размножающиеся клонированием, возникли сравнительно недавно — скорее тысячи, чем миллионы лет назад. Именно так и должно быть, если подобные виды возникают лишь изредка, некоторое время процветают, а затем, в течение нескольких тысяч лет, вырождаются и вымирают. Несмотря на то, что бесполые виды иногда переживают периоды расцвета, половое размножение непросто полностью вытеснить, потому что бесполых видов всегда очень немного. При этом известны вполне веские “случайные” причины, в силу которых организмам, размножающимся половым путем, может быть сложно перейти на клонирование. Например, млекопитающим свойствен так называемый геномный импринтинг (выключение некоторых генов в зависимости от того, от отца или от матери они унаследованы), в связи с чем любой организм должен непременно получить в наследство гены обоих родителей, иначе он будет нежизнеспособен. От подобной сексуальной зависимости, вероятно, непросто избавиться по чисто техническим причинам. И надо сказать, что среди всех видов млекопитающих не известно ни одного случая отказа от секса. Похожим образом обстоят дела и у хвойных растений, которым, в свою очередь, трудно избавиться от полового размножения потому, что митохондрии у них наследуются через яйцеклетки, а хлоропласты — через пыльцу. Любому хвойному растению жизненно необходимо унаследовать и то, и другое, а для этого требуется развиваться из оплодотворенной яйцеклетки. И среди хвойных тоже не известно ни одного бесполого вида.
Но это объяснение годится далеко не всегда. Есть немало оснований полагать, что секс выгоден не только популяциям, но и приносит непосредственную пользу отдельным организмам. Начнем с того, что существует немало видов (большинство, если принять во внимание всех бесчисленных одноклеточных протистов), у которых половое размножение факультативно, то есть они занимаются сексом лишь от случая к случаю, иногда даже раз в тридцать поколений или около того. Некоторые виды, например одноклеточного паразита лямблию, пока ни разу не удалось застать “на месте преступления”, При этом известно, что у лямблий сохранились все необходимые для мейоза гены, то есть вполне возможно, что изредка, когда ученые не подсматривают, они все-таки спариваются. Подобные механизмы работают не только у мало кому известных одноклеточных, но и у целого ряда крупных организмов, таких как некоторые брюхоногие моллюски, ящерицы и злаки, способные переключаться с клонирования на секс в зависимости от обстоятельств. При этом они, естественно, могут при желании всегда возвращаться к клонированию, поэтому “случайная” затруднительность отказа от секса не может быть правильным ответом на интересующий нас вопрос.
Похожую логику можно применить и к происхождению секса. Когда первые эукариоты “изобрели” секс (почему именно они, мы разберемся потом), в большой популяции клеток, размножающихся клонированием, сначала должно было появиться очень немного клеток, размножавшихся половым путем. Чтобы в такой популяции распространилось половое размножение (а это должно было случиться, потому что все эукариоты происходят от общего предка, который уже размножался половым путем), секс как таковой должен был давать какие-то преимущества потомкам размножающихся половым путем клеток. Иными словами, своим первоначальным распространением секс должен быть обязан выгоде, которую он обеспечивал отдельным особям в составе популяции, а не всей популяции.
Именно эту идею, тогда еще новую (что секс просто обязан быть полезен для отдельных организмов, несмотря на свою двойную цену), и сформулировал в 1966 году Джордж Уильямс. В то время казалось, что проблема уже решена, но стало ясно, что это отнюдь не так и что все гораздо сложнее, чем было принято считать. Чтобы половое размножение получило распространение в бесполой популяции, размножающиеся половым путем особи должны были в каждом поколении производить более чем вдвое больше выживающих потомков, чем их бесполые родственники. И это при том, что уже хорошо понятна была беспристрастность секса: на каждого везучего потомка должен был приходиться невезучий, на каждое хорошее сочетание генов — плохое. Объяснение происхождения секса должно было оказаться одновременно тонким и всеобъемлющим, очевидным и ускользающим. Неудивительно, что эта проблема привлекла внимание лучших биологов.
Уильямс предложил отвлечься от генов и обратить внимание на среду, точнее — на экологию. Он задался вопросом, чем может быть выгодно отличие от своих родителей. Предложенный ученым ответ состоял в том, что это должно быть полезно в меняющейся среде, при освоении новых территорий, при расширении экологической ниши, при расселении или при миграциях. Уильямс пришел к выводу, что размножаться клонированием — все равно что покупать сто лотерейных билетов с одним и тем же номером. Уж лучше купить пятьдесят билетов с разными номерами, и половое размножение дает возможность делать именно это.
Это объяснение выглядит разумным. В некоторых случаях оно действительно годится, но то была лишь первая из целого ряда остроумных гипотез, которые предстояло сопоставить с фактами и убедиться в их недостаточной весомости. Если секс — это ответ организмов на изменчивость среды, то в высоких широтах или на больших высотах со свойственным им непостоянством условий мы должны наблюдать больше секса (или в периодически пересыхающих ручьях). Но, как правило, мы ничего подобного не наблюдаем. Секса оказывается больше в стабильной, густонаселенной среде, например в озерах или морях, а также в тропиках, а если среда меняется, то растения и животные, как правило, следуют за предпочтительными для них условиями, например переселяясь при потеплении климата к северу вслед за отступающими ледниками. Получается, что среда редко меняется так, что каждому следующему поколению нужно отличаться от своих родителей. Но тогда заниматься сексом должно быть выгоднее лишь время от времени. Вид, который чаще всего размножался бы клонированием, а к половому размножению прибегал бы, скажем, раз в тридцать поколений, редко платил бы за секс двойную цену, но при этом не лишался бы выгод рекомбинации. И все же по большей части мы наблюдаем совсем иную картину, по крайней мере у крупных организмов, таких как растения и животные.
Другие объяснения экологического свойства, например связанные с конкуренцией за пространство, тоже не выдерживали проверку фактами. И тогда на сцену вышла — точнее выбежала — Черная Королева. На случай, если вы с ней не знакомы, поясню, что это героиня книги Льюиса Кэрролла “Алиса в Зазеркалье”, настоящего шедевра литературы абсурда. Когда с Черной Королевой встречается Алиса, они вдвоем пускаются бежать и бегут изо всех сил, но при этом ни на шаг не сдвигаются с места. “Здесь, — говорит Королева, — приходится бежать со всех ног, чтобы только остаться на том же месте!” Биологи используют этот образ применительно к “гонкам вооружений” между видами, сцепившимися друг с другом в нескончаемом соревновании и непрерывно эволюционирующими, но никогда надолго не обгоняющими друг друга. Особенно важной эта идея оказалась для ответа на вопрос об эволюции секса5.
Гипотезу Черной Королевы активно отстаивал в начале 8о-х годов XX века Билл Гамильтон — замечательный натуралист и специалист по математической генетике, которого многие считают “самым выдающимся дарвинистом после Дарвина”. Внеся весомый вклад в целый ряд областей эволюционной теории (например разработав модели родственного отбора для объяснения альтруистичного поведения), Гамильтон с головой погрузился в исследования паразитов — и сам, как ни печально, подвергся их нападению, заразившись в возрасте шестидесяти трех лет малярией. Это произошло в 1999 году в Конго, где бесстрашный ученый искал шимпанзе, зараженных вирусом СПИДа. Гамильтон умер в 2000 году. В трогательном некрологе, опубликованном в журнале “Нейчур”, его коллега Роберт Триверс отметил: “Он обладал самым острым, самым глубоким умом из всех, кого мне доводилось встречать. В свои слова он вкладывал двойной и даже тройной смысл, так что в отличие от всех нас, говорящих и думающих отдельными нотами, он думал целыми аккордами”.
До того, как паразитами со свойственным ему энтузиазмом занялся Гамильтон, они имели дурную славу. Зоолог викторианской эпохи Эдвин Рей Ланкестер презрительно отзывался о них как о продукте эволюционного вырождения (с незавидной судьбой, которую, как он полагал, предстояло разделить всей западной цивилизации), и грозная тень этого ученого витала над зоологами и столетие спустя. Мало кому из исследователей, не занимавшихся паразитологией профессионально, приходило в голову рассмотреть сложные адаптации, которыми паразиты успешно пользуются, меняя форму и устройство своего организма при переходе от одного хозяина к другому и нацеливаясь на жертв с изумительной точностью, в механизме которой паразитологам не удавалось разобраться за десятки лет работы. На самом деле это отнюдь не выродки, а одни из самых хитроумно приспособленных видов. Более того, они фантастически успешны: по некоторым оценкам, число паразитических видов превосходит число свободноживущих в четыре раза. Гамильтон быстро понял, что непрекращающееся состязание между паразитами и их хозяевами создает именно такие непрестанно меняющиеся условия, какие нужны, чтобы секс мог давать организмам серьезные преимущества.
Зачем нам отличаться от своих родителей? А затем, что наших родителей в тот момент, когда мы появляемся на свет, скорее всего, одолевают паразиты. Те, кому повезло родиться в стерильных условиях Европы или Северной Америки, могут и не знать об ужасах заражения паразитами, но остальному миру не позавидуешь. Чтобы оценить масштабы бедствия, вспомним о таких заболеваниях, как малярия, сонная болезнь и речная слепота. По крайней мере два миллиарда людей во всем мире заражены теми или иными паразитами. У нас гораздо больше шансов умереть от вызываемых паразитами болезней, чем погибнуть от хищников, от стихийных бедствий или от голода. А что касается других живых существ, то одно тропическое животное или растение нередко служит хозяином двум десяткам видов паразитов одновременно.
Секс помогает бороться с паразитами потому, что они очень быстро эволюционируют: продолжительность их жизни обычно невелика, а численность популяций огромна. Им не требуется много времени, чтобы приспособиться к паразитированию на своих хозяевах на самом глубоком молекулярном уровне, подогнав белок к белку, ген к гену. Когда им это не удается, они расплачиваются жизнью, когда удается — получают возможность расти и размножаться. Если все особи в популяции хозяина генетически идентичны, то удачливый паразит получает в свое распоряжение всю популяцию, что вполне может привести к ее полному вымиранию. Однако если хозяева отличаются друг от друга, то есть шанс, и даже немалый, что у некоторых особей в популяции окажется редкий генотип, дающий устойчивость к паразиту. Такие особи будут успешнее выживать и размножаться, пока паразиту, чтобы самому избежать вымирания, не придется найти способ преодолеть сопротивление этого нового генотипа. И эта гонка продолжается без конца, поколение за поколением, генотип за генотипом. Паразиты и их хозяева бегут со всех ног, не сдвигаясь с места, как Черная Королева. Итак, секс существует, чтобы бороться с паразитами6.
По крайней мере, так гласит теория. Несомненно, что секс повсеместно распространен в густонаселенных притонах, где процветают паразиты, и так же несомненно, что в таких условиях секс может приносить потомству непосредственную пользу. Тем не менее, сохраняются сомнения в том, что угрозы, связанные с паразитами, действительно достаточно серьезны, чтобы объяснить эволюцию, сохранение и повсеместное распространение секса. Не так-то просто выявить в природе неустанную гонку генотипов, предсказываемую гипотезой Черной Королевы, а компьютерные модели, разработанные для проверки условий, способствующих сексу, рисуют гораздо более скромную картину, чем предполагала блистательная концепция Гамильтона.
Например, в 1994 году Кертис Лайвли, один из ведущих разработчиков гипотезы Черной Королевы, признал, что компьютерные модели показывают, что “паразиты дают сексу решающие преимущества только в тех случаях, когда вероятность передачи паразита велика (выше 70 %), а действие паразита на приспособленность хозяев было самым серьезным (снижало их приспособленность более, чем на 8о %)”. Хотя в некоторых случаях эти условия, несомненно, выполняются, большинство вызываемых паразитами болезней недостаточно губительны, чтобы давать сексу превосходство над клонированием. Благодаря мутациям клоны тоже могут со временем накапливать генетическое разнообразие, и компьютерные модели показывают, что такие разнообразные клоны обычно преуспевают больше, чем организмы, размножающиеся половым путем. Различные остроумные уточнения дают Черной Королеве больше власти, но отдают подгонкой под ответ. К середине 90-х годов в этой области воцарилось уныние. Появилось ощущение, что ни одна теория не может объяснить эволюцию и сохранение секса.
Разумеется, никто не говорит, что секс непременно должна объяснять единственная теория. Ни одна из выдвинутых на этот счет гипотез не исключает другие, и хотя с математической точки зрения подобное решение выглядит сумбурным, в природе сумбура может быть сколько угодно. С середины 90-х годов исследователи начали объединять теории попарно, чтобы выяснить, усиливают ли они друг друга, и оказалось, что это действительно так. Стало ясно, например, что многое зависит от партнера Черной Королевы и что в сочетании с некоторыми партнерами она оказывается сильнее. Кертис Лайвли показал, что когда Черная Королева и храповик Меллера действуют совместно, выгода от секса растет, давая обеим концепциям более широкое применение. Но когда исследователи вернулись за кульман, чтобы снова подобрать параметры, оказалось, что один из них получается явно неправильным, слишком отвлеченным, чтобы соответствовать действительности. Это было требование бесконечной численности популяций. На самом деле численность большинства популяций далека от бесконечной, а в тех случаях, когда она очень велика, популяции обычно структурированы географически, подразделяясь на конечные частично изолированные составляющие. Причем, как ни странно, это имеет принципиальное значение.
Самым странным оказалось, наверное, то, для чего это значение принципиально. Старые идеи из области популяционной генетики, восходящие к работам Фишера и Меллера 30-х годов, восстали из святых мощей, в виде которых они покоились в учебниках, и породили, по-моему, самую перспективную теорию, объясняющую повсеместное распространение секса. Хотя некоторые исследователи, особенно Уильям Хилл, Алан Робертсон и Джо Фелсенстайн, развивали идеи Фишера еще в 60-х годах, подлинный прорыв в этой области произвели замечательные математические разработки, авторами которых были Ник Бартон из Эдинбургского университета и Сара Отто из Университета Британской Колумбии. За последние десять лет построенные ими модели позволили успешно объяснить выгоды секса как для отдельных организмов, так и для популяций. Отрадно и то, что новая концепция включает в себя ряд других, от лотереи Уильямса до гипотезы Черной Королевы.
В основу этих новых представлений положено взаимодействие случая и отбора в популяциях с конечной численностью. В бесконечно больших популяциях должно происходить все, что только может произойти. При этом неизбежно будут возникать и идеальные сочетания генов, причем на это, вероятно, не потребуется слишком много времени. В настоящих популяциях дела обстоят совсем по-другому. Это происходит оттого, что без рекомбинации гены в хромосомах соединены друг с другом как бусины, нанизанные на шнурок. Судьба хромосомы зависит от всего ансамбля, всех бусин на шнурке, а не от качества отдельных генов. Большинство мутаций вредны, но не настолько плохи, чтобы поставить крест на той (в остальном нормальной) хромосоме, где они происходят. А это значит, что они могут накапливаться, постепенно снижая приспособленность и в итоге делая некачественные хромосомы нормой. Этот постепенный приток мутаций, которые редко оказываются достаточно серьезными, чтобы искалечить или убить организм, подтачивает генетические силы организмов и исподволь снижает средний для популяции уровень.
По иронии судьбы, в такой второсортной среде даже полезные мутации могут не приводить ни к чему хорошему. Давайте представим себе некую условную хромосому, содержащую пятьсот генов. Если в одном из них произойдет полезная мутация, то может случиться одно из двух: либо второсортная компания, в которую этот ген попал, остановит распространение такой мутации, либо не остановит. В первом случае сильный положительный отбор на тот ген, где она произошла, будет компенсирован слабым отбором против остальных 499 генов. Тогда появление подобной мутации не возымеет никакого эффекта и с большой вероятностью она снова будет утрачена, потому что естественный отбор ее как бы не заметит. Иными словами, селективные помехи, создаваемые другими генами той же хромосомы, снижают выгоду полезных мутаций и препятствуют естественному отбору.
Со второй же возможностью связан дьявольски коварный подводный камень. Представьте себе, что в популяции разбросаны пятьдесят вариантов интересующей нас хромосомы. Новая мутация, которая окажется достаточно полезной, чтобы распространиться по всей популяции, должна по определению вытеснить все другие варианты того же гена. Беда в том, что при этом она вытеснит не только все другие варианты того же гена, но и все другие варианты всех без исключения других генов, кроме своих соседей по хромосоме. Возникновение пятидесятого варианта данной хромосомы с полезной мутацией будет означать исчезновение из популяции остальных сорока девяти. Хуже того, этот принцип будет работать не только для генов, физически сцепленных друг с другом в одной хромосоме, но и для всех генов, объединенных общей судьбой у организма, размножающегося клонированием, то есть вообще для всех генов в популяции таких организмов. Последствия будут катастрофическими: популяция практически потеряет генетическое разнообразие.
Стало быть, “плохие” мутации будут портить “хорошие” хромосомы, а “хорошие” мутации будет застревать на “плохих” хромосомах, и приспособленность организмов в популяции так или иначе будет снижаться. В тех редких случаях, когда “хорошая” мутация окажется достаточно хороша, чтобы ее поддержал сильный отбор, это будет приводить к катастрофическим последствиям для генетического разнообразия. Результаты подобного процесса наглядно представлены на вырожденной Y-хромосоме мужчин, никогда не подвергающейся рекомбинации7. Бледная тень женской Х-хромосомы (которая подвергается рекомбинации, потому что у женщин таких хромосом две), Y-хромосома представляет собой жалкий обрубок, на котором сохранилась лишь горстка генов, перемешанных с целой кучей генетической абракадабры. Если бы все хромосомы были настолько вырождены, сложные формы жизни были бы невозможны.
Дьявольское коварство этим не ограничивается. Чем сильнее отбор, тем выше вероятность того, что он полностью истребит ту или иную вредную мутацию. На такое способен сильный отбор любого рода, связанный с паразитами, климатом, голодом или заселением новых местообитаний (именно это и связывает данную концепцию с гипотезой Черной Королевы и некоторыми другими концепциями эволюции секса). Результатом в каждом подобном случае будет потеря генетического разнообразия, что, в свою очередь, приведет к снижению “рабочей” численности популяции. Крупным популяциям обычно свойственно большое генетическое разнообразие, а малым — небольшое. Популяции организмов, размножающихся клонированием, будут терять генетическое разнообразие с каждой “чисткой”, производимой отбором. Тогда даже крупные популяции (включающие миллионы особей) с точки зрения популяционной генетики станут вести себя как малые (включающие тысячи особей), и слепой случай вступит в свои права. Таким образом, сильный отбор будет приводить к тому, что даже у крупных популяций будет низкая “рабочая” численность, что сделает их уязвимыми для вырождения и вымирания. Результаты целого ряда исследований показали, что именно такая генетическая бедность широко распространена не только у тех видов, которые размножаются клонированием, но и у тех, которые прибегают к половому размножению лишь изредка. Огромное преимущество секса состоит в том, что он дает “хорошим” вариантам генов возможность отделяться в ходе рекомбинации от всевозможного мусора, составляющего их генетический фон, в то же время сохраняя значительную часть скрытой генетической изменчивости популяций.
Математические модели Ника Бартона и Сары Отто показывают, что селективные помехи, вызываемые генами, сказываются и на отдельных организмах, а не только на популяциях в целом. У организмов, способных размножаться как половым путем, так и клонированием, частотой секса может управлять единственный ген. Изменение частоты “сексуального” варианта такого гена указывает на эволюционный успех секса. Если его частота возрастает, значит, в выигрыше оказывается секс, если снижается — клонирование. Главное — если частота такого варианта возрастает из поколения в поколение, то это значит, что секс выгоден отдельным организмам. И она действительно возрастает. Из всех идей, которые мы обсуждали в этой главе, идея селективных помех имеет самую широкую область применения. Секс (несмотря на его двойную цену) работает лучше, чем клонирование, почти при любых обстоятельствах. Разница между сексом и клонированием особенно велика, если популяция обладает высокой изменчивостью, частота мутаций высока, а давление отбора сильно. Эта дьявольская троица факторов непосредственно связывает теорию селективных помехе вопросом о самом происхождении секса.
Над проблемой секса бились лучшие биологи, но мало кто из них был настолько безрассуден, что пытался рассуждать о происхождении этого явления. Слишком мало можно узнать о том, у каких организмов и в каких условиях возникло половое размножение, поэтому любые умозрительные рассуждения на эту тему неизбежно останутся умозрительными. И все же, несмотря на продолжающиеся бурные споры, можно привести два суждения, с которыми, по-моему, согласится большинство специалистов в этой области.
Первое состоит в том, что общий предок всех эукариот уже занимался сексом. Этот вывод можно сделать на основании того, что если искать общие свойства всех растений, животных, водорослей, грибов и протистов, то одним из ключевых таких свойств окажется секс. Тот факт, что секс составляет одну из базовых особенностей эукариот, говорит о многом. Если половой процесс был у нашего общего предка со всеми остальными эукариотами, предками которого, в свою очередь, были бесполые бактерии, значит, где-то должно было возникнуть “бутылочное горлышко”, сквозь которое могли пройти только эукариоты, занимающиеся сексом. Первые эукариоты предположительно были бесполыми, как и бактерии, от которых они произошли (ни у кого из бактерий нет настоящего полового процесса), но все такие эукариоты впоследствии вымерли.
Второе суждение касается митохондрий — этих “электростанций” эукариотических клеток. Нет никаких сомнений в том, что предки митохондрий были свободноживущими бактериями, и представляется почти столь же несомненным, что последний общий предок всех современных эукариот уже обладал митохондриями. Нет сомнений и в том, что сотни, если не тысячи, генов были перенесены из митохондрий в геном клетки-хозяина и что “прыгающие” гены, которых полно в геномах почти всех эукариот, происходят именно из митохондрий. Ни одно из этих наблюдений не вызывает особых споров, но все вместе они рисуют поразительную картину факторов отбора, которые могли привести к возникновению такого явления, как секс8.
Представьте себе первую эукариотическую клетку — химеру, получившуюся в результате вселения крошечных бактерий внутрь более крупной клетки-хозяина. Всякий раз, когда одна из попавших внутрь бактерий умирает, ее гены оказываются на свободе и дождем сыплются на хромосому клетки-хозяина. Отдельные фрагменты этих генов в случайном порядке встраиваются в хромосому хозяина с помощью обычного для бактерий способа встраивания генов. Одни из этих генов полезные, другие — бесполезные, некоторые соответствуют уже имеющимся. Но некоторые встраиваются прямо в середину собственных генов клетки-хозяина, разделяя их на кусочки. “Прыгающие” гены производят страшные разрушения. Клетка-хозяин никак не может остановить их размножение, и они безнаказанно скачут по всему геному, залезая в хозяйские гены и разрезая хозяйскую кольцевую хромосому на несколько линейных хромосом вроде тех, что имеются теперь у всех эукариот (см. главу 4).
Такие клетки образуют очень изменчивую популяцию, которая быстро эволюционирует. Одни простые мутации приводят к утрате клеточной стенки, другие способствуют совершенствованию бактериального клеточного скелета и его постепенному превращению в более динамичный эукариотический клеточный скелет. В клетках-хозяевах образуются внутренние мембраны и ядро — возможно, за счет беспорядочной передачи генов синтеза липидов из клеток-гостей. Эти достижения не требуют прыжков в неизвестность в надежде на лучшую долю: все перечисленные новшества могут возникать поэтапно, за счет простой передачи генов и незначительных мутаций. Но почти все перемены — это перемены к худшему. На каждое полезное изменение приходятся тысячи вредных. Единственный способ сделать хромосомы, которые не будут нести смерть, единственный способ совмещать удачные открытия и лучшие гены в одной клетке — это секс. Настоящий секс, а не скромный и неуверенный обмен генами, как у бактерий. Только секс позволяет совместить ядерную мембрану одной клетки с динамичным клеточным скелетом другой и механизмом мечения белков третьей, параллельно уничтожая неудачные комбинации. Мейоз, комбинируя гены в случайном порядке, может давать одного победителя на тысячу проигравших (или, лучше сказать, одного выжившего на тысячу погибших), но все же он во много раз лучше, чем клонирование. В изменчивой популяции с высокой частотой мутаций, существующей в условиях сильного давления отбора (частично вызываемого шквальным огнем паразитических “прыгающих” генов), клоны были обречены. Неудивительно, что мы все занимаемся сексом. Без секса мы, эукариоты, давно бы погибли.
Но возникает вопрос: если клоны были обречены, могли секс возникнуть достаточно быстро, чтобы спасти положение? Ответ, как ни странно, — да. Чисто технически секс мог возникнуть очень просто. По сути, половой процесс предполагает всего три вещи: слияние клеток, распределение хромосом по наборам и рекомбинацию. Давайте вкратце рассмотрим их.
Слияние клеток у бактерий более или менее исключено: ему мешает клеточная стенка. Но стоит ее утратить, и вполне может возникнуть обратная проблема: как избежать слияния. Среди простых эукариот, таких как слизевики и грибы, распространено слияние в гигантские клетки с множеством ядер — синцитии. Рыхлые сети таких клеток регулярно возникают на одном из этапов жизненного цикла примитивных эукариот. Паразитам, таким как “прыгающие” гены, как, впрочем, и митохондриям, такое слияние идет на пользу, ведь оно обеспечивает им доступ к новым хозяевам. Было показано, что некоторые “прыгающие” гены сами стимулируют слияние клеток. Учитывая все это, намного более сложной задачей первых эукариот могло стать не обеспечение слияния клеток, а наоборот, его предотвращение. Так что первое необходимое условие секса — слияние клеток — почти наверняка не было проблемой.
Распределение хромосом по наборам на первый взгляд кажется делом куда более трудным. Вспомним, что при мейозе происходит замысловатый “танец” хромосом, который начинается с их неожиданного удвоения, а заканчивается распределением их одинарных наборов по четырем дочерним клеткам. Почему все так сложно? На самом деле не так уж и сложно: это не более чем модификация уже имеющегося способа деления клеток — митоза, который тоже начинается с удвоения хромосом. Митоз, по-видимому, развился из нормального механизма деления бактериальных клеток за счет нескольких довольно простых изменений, последовательность которых попытался восстановить Том Кавалир-Смит. Он также отметил, что для превращения митоза в примитивную разновидность мейоза требовалось только одно ключевое изменение — не завершающееся переваривание белкового “клея” (его научное название — когезин), который связывает получившиеся в результате удвоения хромосомы друг с другом. Вместо того чтобы начать новый клеточный цикл, удваивая свои хромосомы, клетка делает паузу, а после возвращается к распределению хромосом по дочерним клеткам. Оставшийся “клей”, по сути, убеждает клетку, что она уже готова к следующему раунду распределения хромосом, хотя на самом деле она так и не завершила первый раунд.
Итогом оказывается сокращение числа хромосом, которое, как утверждает Кавалир-Смит, поначалу и было главной функцией мейоза. Если первым эукариотическим клеткам было трудно избегать слияния в сети, содержащие множество хромосом (что по-прежнему происходит у слизевиков), то для восстановления простых клеток с одинарным набором хромосом требовалась та или иная форма редукционного деления. Мейоз, возникший в результате неполадок в уже существующем на тот момент митозе, позволил восстанавливать отдельные клетки с помощью механизма, мало чем отличающегося от обычного клеточного деления.
Здесь самое время перейти к третьему необходимому компоненту полового процесса — рекомбинации. Но и его возникновение не было большой проблемой, потому что вся необходимая для этого аппаратура уже имелась у бактерий и была просто унаследована от них эукариотами. Не только аппаратура, но и точный механизм рекомбинации у бактерий и эукариот один и тот же. Бактерии постоянно поглощают гены из окружающей среды (в ходе так называемого горизонтального переноса генов) и встраивают их путем рекомбинации в собственные хромосомы. У первых эукариот та же самая аппаратура, должно быть, осуществляла встраивание в геном клетки-хозяина бактериальных генов, дождем сыпавшихся из митохондрий, что привело к устойчивому росту размеров эукариотического генома. Тибор Веллаи из Университета им. Лоранда Этвеша в Будапеште полагает, что функцией рекомбинации у первых эукариот было, по-видимому, именно встраивание генов в хромосомы. Но задача заставить аппаратуру для рекомбинации выполнять в ходе мейоза менее специальную функцию сводилась, надо полагать, к простой формальности.
Так что возникновение секса в ходе эволюции было, по-видимому, не таким уж сложным делом. По чисто техническим причинам он должен был возникнуть почти неизбежно. Намного более сложный для биологов парадокс состоит в том, что, возникнув, секс впоследствии сохранился. Суть естественного отбора не в “выживании наиболее приспособленных”, потому что выживание ничего не стоит, если приспособленному организму не удается оставить потомство. У клонирования есть огромное преимущество перед сексом, и все же секс занял главенствующее положение почти у всех многоклеточных эукариот. Преимущества, которые обеспечивал секс прежде, по-видимому, ничем не отличаются от тех, которые он обеспечивает и теперь: способность собирать наилучшие сочетания генов водном организме, очищать геном от вредных мутаций и включать в него все ценные новшества. В те времена секс, вероятно, давал лишь одного победителя или даже одного жалкого выжившего на тысячу проигравших и погибших, но все равно это было гораздо лучше, чем клонирование, которое означало верную гибель. И даже сегодня, хотя секс дает вдвое больше потомков, в итоге он обеспечивает потомству более чем вдвое лучшую приспособленность.
По иронии, эти идеи были впервые высказаны еще в начале XX века, но вскоре были забыты, чтобы возродиться в более совершенной форме, а прежде модные теории были отброшены. Эти теории объясняют выгоду секса для отдельных организмов, при этом удачно включая старые теории на манер, достойный самого их предмета: отбрасывая неудачные и соединяя удачные в единую теорию, как гены в хромосомах в результате рекомбинации. Ведь идеи лучше всего эволюционируют тем же половым путем, и мы все вносим свой посильный вклад в их эволюцию.

 

Назад: Глава 4. Сложная клетка
Дальше: Глава 6. Движение

Андрей
Перезвоните мне пожалуйста по номеру 8(950) 046-30-37 Андрей.