Книга: Искра жизни. Электричество в теле человека
Назад: Глава 6 Электрические рыбы
Дальше: Глава 8 Жизнь и смерть

Глава 7
Сердечное дело

Крепись мое сердце; бывало и хуже.
Гомер
Ранним летним утром Алекс собиралась в школу. Несмотря на волнение перед предстоящим экзаменом, чрезмерного стресса она не испытывала. Все было хорошо, пока Алекс не отправилась в ванную. Она протянула руку к выключателю и рухнула на пол. Оказавшаяся рядом мать быстро пришла на помощь. Но это был не просто обморок. У Алекс наблюдались серьезные проблемы с сердцем, и матери, несмотря на отчаянные усилия, не удалось привести ее в чувство.
По счастливой случайности Алекс жила недалеко от пожарной части, и дежурный принял экстренный телефонный вызов. Он быстро прибыл на место и делал девочке искусственное дыхание и непрямой массаж сердца до тех пор, пока не приехала скорая помощь. Это обеспечило приток кислорода к мозгу и тканям, несмотря на то, что сердце работало с перебоями, а легкие перестали дышать. По дороге в больницу сердце девочки останавливалось и усилиями медиков вновь запускалось не один раз. Она находилась без сознания 17 часов, но в конце концов все же пришла в себя.
Анализ показал, что у Алекс нарушена электрическая активность сердца, ведущая к приступам с потерей сознания и к необратимой остановке сердца. Этим недугом страдала вся семья Алекс. Ее бабушка умерла во сне, не дожив до 30 лет, отец не раз терял сознание в детском возрасте и умер молодым всего за год до того, как у Алекс случился тот приступ. Все свидетельствовало о том, что у них был такой же генетический дефект, как и у Алекс.
Алекс и ее родственники не одиноки. Подобные трагедии случаются и в других семьях — дети и молодые взрослые люди умирают во сне после физической нагрузки или стресса. Рассказывают даже о детях, которые падали в обморок после выговора, сделанного учителем, или после того, как они побегают по площадке. Можно без преувеличения сказать, что некоторые дети в таком состоянии действительно умирали от страха. К счастью, наше более глубокое понимание электрической активности сердца позволяет теперь диагностировать это заболевание по электрокардиограмме или путем простого генетического теста и успешно лечить. Биение продолжается
Уже не одно столетие известно, что сердце имеет внутренний ритм и продолжает биться, когда его удаляют из тела живого животного. Одним из первых этот феномен описал великий римский врач Гален. За ним последовали и другие, включая Леонардо да Винчи, который отмечал, что сердце сокращается само по себе. Уильям Гарвей демонстрировал, что даже части разрезанного сердца угря продолжают сокращаться. Возможно, именно из-за этой внутренней активности древние греки считали, что душа человека находится в его сердце. Конечно, у сердцебиения совсем не духовное происхождение, оно возникает в результате электрических явлений, происходящих в клетках сердца.
По сути наше сердце — это насос, управляемый электричеством. Кровь входит через верхние камеры (предсердия), которые сокращаются первыми и проталкивают кровь в значительно более крупные нижние камеры (желудочки). Желудочки сокращаются синхронно примерно через полсекунды — правый желудочек гонит кровь в легкие, а левый заставляет ее циркулировать по всему телу.
Обратные клапаны между верхними и нижними камерами позволяют крови течь только в одном направлении — от предсердия в желудочки. Аналогичные обратные клапаны находятся на выходе из желудочков, отделяя их от крупных сосудов. Если эти клапаны дают течь, что может случиться с возрастом, то кровь перекачивается менее эффективно, организм получает меньше кислорода, и человек чувствует постоянную усталость. Камеры с правой и с левой стороны сердца физически разделены, что предотвращает смешивание богатой кислородом крови, выходящей из легких, с кровью, поступающей из тканей. Поскольку клетки сердца связаны друг с другом, они сокращаются синхронно, и сердце бьется как единый орган.

 

Электрическая система сердца. Клетки, задающие ритм, находятся в синусном узле на стенке правого предсердия. Черными линиями со стрелками обозначены пучки волокон, образующие проводящие пути, по которым электрические сигналы поступают к нижним камерам (желудочкам). Две стороны сердца физически разделены, но сокращаются одновременно. По легочной артерии кровь поступает из правой стороны сердца в легкие. После насыщения кислородом в легких кровь возвращается в левую сторону сердца откуда поступает в аорту и распространяется по всему организму. Момент, когда сердце сокращается, называют систолой, а момент, когда оно полностью расслабляется, — диастолой.
Каждое сокращение инициируется группой задающих ритм клеток (так называемым синусно-предсердным узлом), которые расположены в верхней правой камере сердца и называются водителем ритма. Эти клетки генерируют электрические импульсы, передаваемые остальным клеткам по специализированным проводящим каналам: сначала к предсердно-желудочковому узлу, находящемуся в месте примыкания правого предсердия и желудочков, а затем к стенкам самих желудочков. Время передачи электрических сигналов таково, что они сначала достигают верхних камер, а потом желудочков. Неодновременность моментов возбуждения необходима для того, чтобы сердце могло выполнять роль насоса. При нарушении последовательности возбуждения сердце перестает биться ровно и теряет способность перекачивать кровь находится под угрозой.
Хотя средняя частота сокращений сердца в спокойном состоянии составляет 70 ударов в минуту (т. е. примерно 100 000 ударов в сутки), она очень широко варьирует от человека к человеку. У спортсменов частота сокращений в состоянии покоя значительно ниже, нередко всего 40 ударов в минуту. Рекордно низкая частота сокращений (28 ударов в минуту) была зарегистрирована у велосипедиста Мигеля Индурайна, который выигрывал гонку Tour de France пять раз кряду. В отличие от спортсменов сердце младенцев бьется намного быстрее, чем у взрослых людей (130–150 ударов в минуту). К тому же частота сокращений сердца меняется в зависимости от размера тела. Так, у более мелких животных (включая младенцев) в состоянии покоя частота сокращений выше: сердце крошечной землеройки бьется с частотой 600 ударов в минуту, а у слона — 25 увесистых ударов в минуту. Электрокардиограмма
Электрические сигналы, генерируемые клетками сердца, вызывают ничтожные изменения электрического потенциала на поверхности тела, которые можно зарегистрировать с помощью электродов, прикладываемых к коже. Это основа получения электрокардиограммы, которую все знают по аббревиатуре ЭКГ.

 

Собака Августа Валлера по кличке Джимми была самым популярным персонажем на ежегодном вечере, устраиваемом Королевским научным обществом в Берлингтон-хаусе. Это научное собрание для ученых и широкой публики проводится до сих пор и традиционно сопровождается демонстрацией опытов. Джимми с достоинством стоит двумя лапами (левыми) в электропроводном соляном растворе, который соединен со струнным гальванометром Эйнтховена (большой ящик слева), регистрирующим каждое сокращение сердца. Струна подсвечивается прожектором, а ее тень проецируется на простыню. Струна колеблется в такт сокращениям сердца бульдога. Измерение было совершенно безболезненным, что отмечали многие добровольцы из публики, рискнувшие занять место Джимми. Август Валлер виден у левого края фотографии.
Электрическая активность сердца впервые была зарегистрирована Августом Валлером в 1887 г. Он снял кардиограмму у себя и у своей собаки Джимми. Демонстрация его метода на ежегодном вечере Королевского научного общества в Лондоне в 1909 г. была открытой для публики, а отчет о ней опубликовали в журнале Illustrated London News. Это вызвало шквал протестов в парламенте, а г-н Эллис Гриффит, член парламента от графства Англси, потребовал провести расследование, не было ли здесь нарушения Закона о защите животных 1876 г. По сообщению газеты The Times, министр Гладстон1 ответил на это так: «Насколько я понимаю, собака стояла некоторое время в воде, куда был добавлен хлорид натрия, другими словами, немного обычной соли. Если моему досточтимому другу когда-нибудь доводилось купаться в море, он должен представлять, что чувствуют при этом. (Смех.) Собака — крепко сложенный бульдог — не привязана, и на ней нет намордника. На нее надет кожаный ошейник, украшенный медными заклепками. Будь опыт болезненным, стоявшие рядом с собакой сразу ощутили бы на себе ее зубы. (Смех.) Однако ничто не указывает на это». Он мог бы добавить, что после того, как Джимми прошел испытание, представительницы прекрасного пола, присутствовавшие в зале, выстроились в очередь, желая получить запись своего сердцебиения. Они опускали руки в сосуды с соляным раствором, а «их сердца бились намного ровнее, чем у Джимми». Как видно из этого повествования, обеспокоенность, связанная с проведением опытов над животными, имеет в Англии давнюю историю.
Поначалу записи Валлера были плохого качества и не годились для медицинских целей, и он якобы говорил, что даже не думал о возможности широкого использования электрокардиографии в лечебной практике, ну разве что «в редких случаях для записи уникальных аномалий сердечной деятельности». Однако в результате технического прогресса к 1920-м гг. она уже рутинно применялась для диагностики сердечных заболеваний и остается одним из важнейших клинических методов сегодня.
Проблема была решена с появлением очень чувствительных приборов, способных регистрировать ничтожные электрические токи, возникающие на поверхности тела при сокращениях сердца. Пионером в этой области был Уиллем Эйнтховен, получивший Нобелевскую премию в 1924 г. за изобретение струнного гальванометра. Он содержал тонкое стеклянное волокно, покрытое серебром для обеспечения электропроводности и подвешенное между двумя очень сильными электромагнитами. Когда через волокно («струну» гальванометра) проходил ток, электромагнитное поле заставляло его смещаться. Чем больше был ток, тем сильнее смещалось волокно. Для того чтобы незначительные перемещения стали заметными, волокно освещали ярким пучком света, а отбрасываемую тень регистрировали на движущейся фотографической пластинке. Оставалось лишь соединить электропроводную нить с телом. Для этого к концам нити присоединили провода, которые погрузили в сосуды с раствором соли. Погружение рук и ног в раствор замыкало электрическую цепь между «струной» и кожей. Ток от сердца, проходящий через поверхность тела, теперь влиял на движение нити.
Первая модель струнного гальванометра была огромной. Она весила несколько тонн, для управления ею требовались пять человек, а электромагниты нужно было постоянно охлаждать водой. Стеклянное волокно необходимо было сделать очень легким и тонким. Его получали из расплавленного в тигле кварцевого стекла. Тонкую нить из расплава вытягивали самым необычным способом, который больше походил на выдумку бойскаута, а не на плод размышлений серьезного экспериментатора. Расплавленное стекло прикрепляли к стреле, которую выпускали из одного конца комнаты в другой. Стрела тащила за собой расплав и вытягивала стекло в очень тонкую «струну». Волокно затем покрывали серебром, чтобы сделать его электропроводным. Такой метод сегодня, без сомнения, был бы запрещен по соображениям безопасности, к счастью, в наше время есть другие методы записи ничтожно малых токов.
На первых фотографиях видно, как Эйнтховен сидит, погрузив обе руки и левую ногу (с аккуратно завернутой штаниной) в сосуды с электропроводным соляным раствором, от которых тянутся провода к измерительному прибору. В наши дни для улучшения контакта между электродами и кожей обеих рук и левой ноги используют электропроводный гель. Измерительная аппаратура сильно уменьшилась в размерах. Первый прибор Эйнтховена занимал две комнаты, а сейчас существуют портативные мониторы для круглосуточного контроля сердечной деятельности, которые не мешают пациенту заниматься своими повседневными делами.
ЭКГ отражает суммарный электрический сигнал клеток сердца и является очень хорошим неинвазивным методом контроля их функционирования. Каждый электрокардиографический комплекс состоит из начального импульса, называемого «зубцом P», за которым следует значительно более крупный и острый биполярный пик, известный как «комплекс QRS», а затем, две-три сотни миллисекунд спустя, более низкий и медленный «зубец T». Зубец P отражает электрическую активность клеток предсердий, а комплекс QRS и зубец T — начало и конец электрического импульса (потенциала действия) в клетках желудочков. Поскольку эти электрические сигналы вызывают сокращения мышц, зубец P также соответствует сокращению предсердий, а интервал между комплексом QRS и зубцом T указывает на продолжительность сокращения желудочков. Задержка между зубцами P и Q соответствует времени, в течение которого электрический сигнал проходит от предсердий до желудочков, а интервал между зубцами Q и T отражает продолжительность желудочкового потенциала действия. Почему Эйнтховен выбрал для обозначения зубцов ЭКГ средние буквы алфавита, остается загадкой.

 

Взаимосвязь между потенциалом действия желудочков (потенциал действия, верхняя кривая), электрокардиограммой (ЭКГ, средняя кривая) и сокращением сердца (нижняя кривая). «A» обозначает продолжительность сокращения предсердия, а «V» — продолжительность сокращения желудочков. Интервал QT отражает длительность потенциала действия желудочков.
ЭКГ особенно полезна для обнаружения нерегулярности электрической активности сердца и для диагностики ее причин. Изменение амплитуды и времени появления различных элементов ЭКГ может свидетельствовать о клинических проблемах. Более длинный, чем нормальный, интервал PR, например, сигнализирует о нарушении проводимости между верхними и нижними камерами сердца, называемом блокадой сердца. Перевернутый зубец T появляется после сердечного приступа, а увеличение интервала QT свидетельствует о повышенном риске внезапной необратимой остановке сердца. Сердечные недуги
Хотя только клетки синусного узла правового предсердия действуют как водители ритма, спонтанно генерировать электрическую активность способны все клетки сердца. Это великое счастье, поскольку позволяет сердцу не останавливаться даже тогда, когда клетки синусно-предсердного узла перестают функционировать: их заменяют другие клетки, которые задают более медленный ритм. К последним относятся клетки расположенного между предсердием и желудочками предсердно-желудочкового узла, которые сокращаются 40–60 раз в минуту, и клетки, образующие проводящие пути в стенках желудочков (которые сокращаются 30–40 раз в минуту). Даже клетки желудочков сокращаются спонтанно. Причина, по которой именно клетки синусного узла обычно задают ритм, проста — их внутренняя частота сокращений самая высокая.
Если сердце бьется слишком медленно (это состояние называют брадикардией), то оно не может подавать кровь к тканям достаточно быстро, и человек чувствует усталость, слабость, головокружение и затруднение дыхания. Ходьба пешком и подъем по лестнице превращаются в испытание. Тахикардия, т. е. слишком быстрое биение сердца, тоже является проблемой. При частоте биения более 100 ударов в минуту у сердца недостаточно времени, чтобы полностью наполниться между сокращениями, и количество перекачиваемой крови сокращается. Как следствие, ткани опять страдают от недостатка кислорода, и человек ощущает постоянную усталость.
Временные нарушения ритма сердцебиения — довольно обычное явление, и многие из нас чувствуют пропуски сокращения. В действительности пропусков сокращений не бывает, просто мы чувствуем это как пропуск. На самом деле сокращение наступает рано, и мы не воспринимаем его как сокращение, поскольку сердце наполняется только наполовину. Затем следует необычно долгая пауза перед следующим сокращением, которое более заметно из-за того, что сердце переполняется. Такие «пропуски сокращений» очень распространенное явление, однако, несмотря на вызываемое ими беспокойство, они не имеют значения. Хотя по большей части пропуски сокращений возникают спонтанно, они также могут провоцироваться стрессом или препаратами вроде кофеина.
Самой распространенной патологией сердцебиения является мерцательная аритмия (AF), которой страдают 5 % людей старше 65 лет. Когда она возникает, верхние камеры сердца начинают сокращаться с перебоями и несинхронно. Это случается в результате нарушения электрической активности клеток синусно-предсердного узла или нарушений распространения электрического возбуждения в предсердиях при повреждении тканей. Если предсердия сокращаются несинхронно, то их способность нагнетать кровь в желудочки снижается, объемная скорость кровотока сердца падает, а пациент чувствует дурноту. Помимо прочего, при этом пульс становится неустойчивым. Мерцательная аритмия может вызвать появление тромбов, которые повышают риск инсульта. Тромб способен закупорить кровеносный сосуд мозга и перекрыть доступ крови к нижележащим тканям, которые отмирают (именно поэтому результатом инсульта нередко является потеря речи или частичный паралич). Иногда нормальный сердечный ритм удается восстановить с помощью лекарств или мягкого электрошока (процедура, известная как электроимпульсная терапия), однако, если мерцательная аритмия не проходит, может потребоваться электрокардиостимулятор.
Один из новых методов лечения мерцательной аритмии заключается в удалении небольшого участка ткани предсердия, который блокирует электрическую активность и тем самым вызывает проблему. Обычно это дает очень хороший эффект, и сердечная аритмия повторяется намного реже, чем при медикаментозном лечении. Операция может выполняться с помощью катетера, который вводится в вену и подводится через кровеносные сосуды к нужному месту сердца. Затем через катетер подают энергию, например высокочастотный импульс, для избирательного разрушения целевых клеток.
Более тяжелым случаем является блокада сердца, когда повреждение проводящих путей не позволяет электрическому сигналу проходить от предсердий к желудочкам (обратите внимание на то, что это не блокирование сосудов сердца). При полной блокаде сердца предсердный сигнал совершенно не проходит. Как следствие, желудочки начинают сокращаться по собственному ритму, и частота биения сердца может упасть вплоть до 30 ударов в минуту. Больной при этом с большим трудом переносит физические нагрузки. В таких случаях без электрокардиостимулятора не обойтись.
К самому серьезному нарушению сердечного ритма следует отнести вентрикулярную фибрилляцию (VF), которая приводит к смерти, если ее не устранить. В этом состоянии наблюдается электрический хаос из-за того, что множество областей в нижних камерах сердца борются за контроль ритма. В результате желудочки сокращаются настолько несинхронно, что сердце непрерывно вздрагивает, но сократиться полноценно не может. Как заметил выдающийся анатом XVI в. Везалий, оно похоже на извивающийся мешок с червями. Когда такое происходит, более-менее значительный кровоток сердца становится невозможным, и сердце довольно быстро останавливается из-за отсутствия кислорода, а больной умирает в течение нескольких минут. Но еще до остановки сердца кислородное голодание приводит к необратимому повреждению мозга. В такой ситуации единственным спасением является немедленное восстановление нормального ритма. Для этого нужно остановить сердце с помощью электрического разряда дефибриллятора и надеяться, что оно вернется к нормальному ритму после самопроизвольного запуска — процесс немного смахивает на нажатие кнопки перезагрузки компьютера.
Сердечные приступы возникают в результате прекращения подачи крови к сердцу, и причиной этого обычно является блокирование одной из коронарных артерий. По мере того как ткани, находящиеся за местом блокирования, лишаются кислорода, они начинают отмирать. Это может спровоцировать вентрикулярную фибрилляцию, поскольку повреждение тканей нарушает синхронное распространение электрических сигналов по сердцу. Различные группы сердечных клеток после этого начинают действовать самостоятельно и сокращаться в разное время. Как и в любом сообществе, сотрудничество между различными частями жизненно важно для эффективной работы сердца. Восстановление ритма
Если сердце бьется неровно, для корректировки ритма нередко используют электрокардиостимулятор. Первоначально электрокардиостимуляторы представляли собой большие и громоздкие устройства размером примерно со стиральную машину и питались от электросети. Как следствие, свобода перемещения больного сильно ограничивалась. У таких приборов был и еще один серьезный недостаток — они прекращали работу при отключении электричества. В 1950-х гг. доктор Уолтон Лиллехай из Миннесотского университета начал проводить операции на открытом сердце у «синюшных детей». У таких детей был врожденный порок сердца — отверстие между левым и правым желудочками, в результате чего часть крови проходила мимо легких, и поступление кислорода в организм сильно сокращалось. После хирургического устранения отверстия у некоторых детей наблюдалась кратковременная блокада сердца. Повреждение тканей приводило к тому, что электрические сигналы от синусно-предсердного узла не доходили до желудочков, и сердцебиение нарушалось. В этих случаях Лиллехай применял электрокардиостимулятор и не отключал его до тех пор, пока сердце ребенка не восстанавливалось, т. е. в течение одной-двух недель.
Серьезное обесточивание Миннеаполиса в октябре 1957 г. привело к гибели одного из «синюшных детей». Разъяренный Лиллехай связался с Medtronic — компанией, выпускавшей электрокардиостимуляторы, и потребовал от нее что-нибудь работающее от батареек. К его немалому удивлению, меньше чем через месяц инженер компании Эрл Баккен приехал с электрокардиостимулятором, который и впрямь работал от батареек. По размерам он был не больше бутерброда. Миниатюризацию позволили осуществить схемы на полупроводниковых транзисторах.
В своей автобиографической книге «Полноценная жизнь одного человека» (One Man’s Full Life) Баккен написал: «В углу гаража я откопал старый номер журнала Popular Electronics, где была напечатана схема электронного метронома на транзисторах. Схема генерировала импульсы, которые воспроизводились как щелчки через громкоговоритель. Частоту щелчков можно было подстраивать под музыку. Я просто модифицировал эту схему и поместил ее, без громкоговорителя, в металлическую коробку размером 10 на 10 сантиметров и толщиной около четырех сантиметров, выведя наружу клеммы и переключатели. И это, как они сказали, было именно то, что надо». Баккен предполагал, что его прототип будет использоваться как экспериментальное устройство для тестирования на животных, и был поражен, увидев на следующий день свой прибор на пациенте. Лиллехай спокойно сообщил ему, что раз прибор работает, то время терять ни к чему, надо спасать жизни больных. Портативный электрокардиостимулятор оказался настолько удачным, что очень скоро его стали применять по всему миру, а Medtronic превратилась в крупнейшего поставщика.
Всего лишь год спустя 43-летнему больному из Швеции по имени Арне Ларссон поставили первый имплантируемый электрокардиостимулятор. Арне страдал от полной блокады сердца, и его смерть казалась неизбежной. Жена Арне, однако, смотрела на перспективу иначе. Она слышала об экспериментах, проводимых на собаках в Каролинской больнице в Стокгольме, и решила, что технология может спасти ее мужа. Ей удалось найти аргументы и убедить хирурга Оке Сеннинга и инженера Руне Элмквиста взяться за дело. Руне собрал электрокардиостимулятор у себя на кухне. Он отказал через три часа после имплантации, поэтому Арне получил новый прибор, который протянул уже несколько недель. Неудачи не смутили Арне, и в конечном итоге он получил 26 различных электрокардиостимуляторов. Электрокардиостимулятор позволил ему вести практически нормальный образ жизни, и Арне стал одновременно и пациентом-консультантом, и пропагандистом электрокардиостимуляторов по всему миру. Он умер через 43 года после имплантации первого электрокардиостимулятора, когда ему стукнуло 86. Готовность рискнуть и выступить в качестве подопытного кролика продлила ему жизнь в два раза.
Идея электрокардиостимулятора очень проста. Прибор подает слабые электрические сигналы, заменяющие собственные сигналы сердца. Чтобы это стало возможным, в правый желудочек сердца внедряют электрод. Обычно его вводят через одну из больших вен, но в некоторых случаях вскрывают грудную клетку, и электрод размещают непосредственно на поверхности сердца. Электрод затем подключают к электрокардиостимулятору, который генерирует слабые электрические разряды, задающие сердцу правильный ритм. Электрокардиостимулятор снабжают батареей и иногда электронной схемой, которая может регистрировать собственный ритм сердца больного и корректировать его по мере необходимости. Когда становится ясно, что устройство работает, его имплантируют в грудную клетку (обычно спереди, в районе плечевого сустава) между мышцей и подкожно-жировой клетчаткой. Первый электрокардиостимулятор, который получил Арне, был размером с хоккейную шайбу, а в наши дни они уменьшились до габаритов десятипенсовой монеты. Электрокардиостимуляторы необходимо заменять раз в пять-десять лет — в зависимости от срока службы батареи. Поскольку электромагнитное излучение может нарушить работу электрокардиостимулятора, больным, которые зависят от этого прибора, следует избегать сильных магнитных полей, сотовых телефонов и электронного оборудования, генерирующего ненаправленное электрическое поле. Спасатели Пэкера
Всем, наверное, знакома типичная картина отделения экстренной помощи, где над пациентом колдует команда медиков, делающих все для спасения его жизни. Неожиданно регулярный звуковой сигнал кардиомонитора пропадает, нормальная кривая ЭКГ пропадает, появляется горизонтальная линия и кто-то выкрикивает: «Остановка сердца!» За этим следуют быстрые и решительные действия. В считаные секунды на грудь пациента накладывают большие плоские электроды, звучит команда «Отойти от больного!», и дают электрический разряд. Грудь пациента резко дергается, ритм сердца восстанавливается, и кардиомонитор вновь начинает подавать регулярные звуковые сигналы.
Но это драматическое действо далеко от реальности. Пациент обычно не дергается в ответ на электрический разряд. Подпрыгивание — это не более чем художественная вольность. Более серьезное отличие заключается в том, что в реальной жизни электрический разряд не используют для запуска остановившегося сердца. Эффектное возвращение к жизни — обычное дело в современной медицине, но только не в случае остановки сердца, а в случае его фибрилляции, когда желудочки сокращаются настолько несинхронно, что сердце превращается в судорожно подергивающийся комок плоти, неспособный перекачивать кровь. И электрический ток используется вовсе не для запуска сердца, а для его остановки. Как уже говорилось, это делается в надежде, что после самопроизвольного запуска сердца клетки природного водителя ритма в синусном узле возобновят свою работу и нормальный ритм восстановится.
Не исключено, что это широко распространенное заблуждение возникло в результате использования термина «остановка сердца». Он, однако, вовсе не подразумевает, как можно предположить, что сердце перестало сокращаться и находится в неподвижном состоянии. Это лишь указание на то, что прекратилась циркуляция крови. Хотя индивидуальные клетки сердца продолжают сокращаться, они делают это несинхронно, так что сердце перестает выполнять роль насоса. Из-за отсутствия кислорода в течение нескольких минут погибает мозг, и в конечном итоге по той же причине перестает биться и само сердце. Если остановка сердца произошла не в больнице, то больному необходимы искусственное дыхание и непрямой массаж сердца, чтобы поддерживать жизнеспособность до тех пор, пока не будет доставлен дефибриллятор. Искусственное дыхание и сжатие сердца выполняются путем нажатия на грудную клетку основаниями ладоней, кровь при этом выталкивается из сердца и циркулирует по телу. Здесь принципиально важна частота нажатий — если она будет слишком высокой, то сердце не будет успевать наполниться кровью, если слишком низкой, то ткани будут страдать от кислородного голодания. Правильная частота — 100 нажатий в минуту. Как ни удивительно, но хит британской музыкальной группы Bee Gees под названием «Остаться в живых» имеет практически правильный ритм и используется как помощь в обучении врачей. Хотя хит группы Queen «Еще один повержен в прах» тоже имеет практически идеальный ритм, он подходит для обучения не так хорошо.
Дефибрилляторы не входили в состав обязательного оснащения автомобилей скорой помощи в Австралии до 1990 г. Ситуация изменилась, когда у Керри Пэкера, известного своим скандальным и эпатажным характером миллиардера, случилась остановка сердца во время игры в поло. Совершенно случайно в скорой помощи, дежурившей у поля, оказался портативный дефибриллятор. Несмотря на клиническую смерть, продолжавшуюся несколько минут, Пэкер выжил. Говорят, что о своих впечатлениях после пребывания в состоянии клинической смерти он высказался так: «Дьявола я там не увидел. Но я не нашел там и рая». После своего спасения Пэкер пожертвовал крупную сумму (2,5 млн австралийских долларов) на оборудование половины автомобилей скорой помощи в штате Новый Южный Уэльс портативными дефибрилляторами с условием, что правительство оплатит оборудование второй половины автомобилей. С той поры в австралийском обиходе эти приборы называют «спасателями Пэкера». Многие австралийцы обязаны жизнью его щедрому дару.
В последние годы применение дефибрилляторов расширилось, и появились такие модели, которыми могут пользоваться и те, у кого нет медицинской подготовки. В Великобритании их можно найти на железнодорожных станциях, в самолетах и других общедоступных местах. Хотя наиболее широко известны дефибрилляторы внешнего действия, электроды которых помещают на грудную клетку человека, существуют и небольшие имплантируемые устройства для тех, у кого высок риск возникновения фибрилляции. Они непрерывно контролируют ритм сердца и при необходимости производят удар электрическим током для его восстановления. Люди с имплантированными дефибрилляторами могут вести нормальный образ жизни, зная, что у них есть «встроенный спасатель». Эти приборы, похоже, дают довольно сильный разряд — говорят, что человек чувствует, будто его ударили в грудь. В ад и обратно
В ноябре 2003 г. рок-певец Мит Лоуф, получивший наибольшую известность как исполнитель одной из ролей в фильме «Шоу ужасов Рокки Хоррора» и хита «Летучая мышь из ада», рухнул на сцену во время концерта в Уэмбли прямо на глазах публики. Его быстро доставили в больницу, где у него обнаружили редкую болезнь сердца, известную как синдром Вольфа — Паркинсона — Уайта. Позднее он рассказал, что «помнит, как пел песню “Все закрутилось” и шел туда, где стояли девушки, но вдруг стал падать». Лоуф решил, что у него случился сердечный приступ.
Синдром Вольфа — Паркинсона — Уайта — это врожденная патология, которой страдает 1–3 % населения. Обычно она создает проблемы только в тех случаях, когда сердце бьется очень часто, что случается при тяжелой физической нагрузке. Неожиданная смерть спортсменов в очень хорошей физической форме от остановки сердца, как, например, это произошло с хоккеистом Брюсом Мелансоном, нередко наступает именно из-за синдрома Вольфа — Паркинсона — Уайта. Другим страдающим этой патологией повезло больше. Ламаркус Олдридж, американский баскетболист, выступавший за Portland Trailblazers, был снят с игры против Los Angeles Clippers после жалоб на головокружение, одышку и нерегулярное сердцебиение. Позднее у него обнаружили синдром Вольфа — Паркинсона — Уайта. Приступ и у него, и у Мита Лоуфа был успешно снят.
В нормально функционирующем сердце электрические сигналы, генерируемые в предсердии, поступают в желудочки по специальному проводящему тракту, называемому предсердно-желудочковым узлом. У людей с синдромом Вольфа — Паркинсона — Уайта между предсердиями и желудочками расположен дополнительный мостик из ткани, который образует альтернативный канал для передачи электрических сигналов. Момент подачи электрического сигнала к желудочкам критически важен для правильного сердцебиения, и предсердно-желудочковый узел действует как диспетчер между предсердиями и желудочками, модулирующий распространение электрического импульса. Если предсердия сокращаются слишком часто, предсердно-желудочковый узел пропускает не все сигналы и не позволяет желудочкам сокращаться слишком часто. Дополнительный проводящий тракт, существующий у людей с синдромом Вольфа — Паркинсона — Уайта, не обладает свойствами предсердно-желудочкового узла и может таким образом спровоцировать высокий сердечный ритм. Кроме того, электрический сигнал между предсердиями и желудочками может закольцовываться, поступая через предсердно-желудочковый узел и возвращаясь через дополнительный проводящий тракт. Это приводит к очень высокой частоте сокращений желудочков, фибрилляции и внезапной смерти.
К счастью, синдром Вольфа — Паркинсона — Уайта в настоящее время успешно лечится путем очень простой и эффективной операции — в сердце вводят катетер, находят причиняющий неприятности паталогический мостик и разрушают его с помощью радиочастотных импульсов. Электрическое сердце
При стимулировании сердечной клетки она испускает электрический импульс, или потенциал действия. Он быстро распространяется по поверхности клетки, а потом по сети тонких трубочек, глубоко проникающих в мышечное волокно. Изменение мембранного потенциала в положительную сторону заставляет открываться кальциевые каналы во внешней мембране и T-трубочках, обеспечивая приток ионов кальция из внеклеточного раствора. Они, в свою очередь, выполняют роль внутриклеточных мессенджеров, вызывающих выброс значительно большего количества ионов кальция из внутриклеточных хранилищ. В результате взаимодействия ионов кальция с сократительными белками мышечные клетки укорачиваются. Фактически электрический импульс обеспечивает одновременное повышение концентрации кальция по всей клетке и, таким образом, плавное и синхронное сокращения каждого мышечного волокна сердца.
Как и в случае нервных клеток, за генерирование электрических импульсов в клетках сердца отвечают ионные каналы. Однако в клетках сердца в формировании потенциала действия участвует намного больше типов каналов. Все начинается с открытия натриевых каналов. Они подобны, но не идентичны тем, что находятся в нервных клетках. Именно поэтому смертельные яды, например яд иглобрюха, в нервах блокируют электрические импульсы, а в сердце нет. Дефекты гена сердечных натриевых каналов (SCN5A) могут приводить к появлению натриевых каналов, которые не функционируют должным образом. В результате возникает редкая наследственная патология, так называемый синдром Бругада, при которой внезапное прекращение электрической активности сердца может приводить к смерти.
Синдром Бругада распространен по большей части в азиатском сообществе. На него приходится около 12 % случаев необъяснимой смерти, и он, если не считать несчастных случаев, является основной причиной смерти мужчин в возрасте до 40 лет в некоторых регионах мира. Так, он настолько обычен на Филиппинах, что даже имеет специальное название «бангунгут», означающее «вскакивание и стоны во сне». Повышенная частота неожиданных смертей во сне отмечается также в Японии и в Таиланде (где это явление называют «лаи таи», т. е. «смерть во сне»). Любопытно, что болезнь поражает мужчин намного чаще, чем женщин. Возможно, именно поэтому в Таиланде верят в то, что болезнь можно отвратить, если спать в женской одежде. Согласно местному поверью, молодые мужчины умирают потому, что их уносит дух вдовы, который можно обмануть, нарядившись женщиной. Поскольку дух охотится не за женщинами, эта хитрость должна защищать от смерти.
К открытию генетической причины синдрома Бругада привела встреча двух ученых, по воле случая оказавшихся рядом в автобусе, который вез в аэропорт участников завершившейся конференции по проблемам сердца. Когда Чарльз Анцелевич высказал удивление по поводу отсутствия страдающих этим видом нарушения сердечного ритма, его сосед сообщил ему, что на самом деле братья Бругада недавно описали именно такую редкую патологию. Результатом этой плодотворной встречи стало открытие того, что причиной синдрома Бругада является мутация с потерей функции в гене сердечных натриевых каналов. Сейчас нам известны уже полсотни мутаций, вызывающих это заболевание. Широким распространением этих мутаций среди населения Южной Азии и объясняется повышенная частота заболевания синдромом Бругада.
Открытие пор в натриевых каналах почти сразу сопровождается открытием кальциевых каналов, которые впускают в клетку ионы кальция, инициирующие выброс кальция из внутриклеточных депо и сокращение. Необходимость ионов кальция для сокращения сердца была открыта по счастливому стечению обстоятельств в начале 1880-х гг. Сиднеем Рингером. Рингер занимался поиском способа поддержания нормального ритма сокращений сердца лягушки. Для этого он добавлял определенные количества неорганических солей в дистиллированную воду, в которой совершенно не было ионов. По крайней мере он так думал. В реальности сам Рингер активно занимался медицинской практикой и был очень занятым человеком, поэтому растворы готовил его лаборант, который не всегда в точности соблюдал инструкции. В своей первой работе Рингер утверждал, что только ионы натрия и калия необходимы для сокращения сердца. Однако позднее он написал: «После публикации (первой работы)… выяснилось, что соляной раствор, который я использовал, был приготовлен не на дистиллированной воде, а на водопроводной воде, подаваемой New River Water Company. Поскольку эта вода содержала следы различных неорганических веществ, я сразу же провел испытание раствора, приготовленного на дистиллированной воде, и обнаружил, что он не дает эффекта, описанного в упомянутой работе. Похоже, что полученные ранее эффекты объясняются наличием каких-то неорганических примесей в водопроводной воде». Оказалось, что этой примесью был кальций, или «известь», как называл его Рингер. Хотелось бы знать, как он поступил со своим лаборантом, похвалил его или наказал (а может, сделал и то и другое)?
Кальциевые каналы важны не только потому, что они впускают ионы кальция, инициирующие выброс запасенного кальция. Эти каналы, помимо прочего, закрываются (инактивируются) медленно при положительных мембранных потенциалах, увеличивая продолжительность сердечного потенциала действия и, таким образом, давая сердцу больше времени на сокращение. Потенциал действия клетки желудочка длится примерно полсекунды, т. е. он в 500 раз продолжительнее, чем потенциал действия нервной клетки.
К окончанию сердечного потенциала действия приводит открытие калиевых каналов, и следующее за этим истечение ионов калия возвращает градиент потенциала на мембране к значению, характерному для состояния покоя. Как следствие, кальциевые каналы закрываются, приток кальция прекращается, и сердце расслабляется. В отличие от калиевых каналов нервных клеток многие калиевые каналы сердца открываются медленно, что способствует еще большему увеличению продолжительности потенциала действия в сердце. Кроме того, в сердце есть калиевые каналы нескольких типов. Одними из наиболее важных являются каналы HERG-типа. Это странное название каналов связано с названием аналогичного ионного канала плодовой мушки дрозофилы. Генетики очень любят это крошечное насекомое за его очень короткий жизненный цикл, плодовитость и возможность легко отделять мутантов. Поскольку мушки очень подвижны и не стоят на месте, их обычно усыпляют эфиром. В 1960-х гг., когда танцы в стиле гоу-гоу были на пике популярности, нашли мутантную мушку, которая дергала лапками и крутилась под наркозом. В результате ее окрестили «эфирной танцовщицей гоу-гоу» — ether-á-go-go, или для краткости EAG. Вскоре после этого был найден соответствующий канал в сердце, который назвали уже более прозаично — ether-á-go-go-related, или ERG. Так вот человеческий (human) канал и получил свое название HERG. Напуганные до смерти
Неожиданный приступ Алекс, случившийся однажды утром, был связан с нарушением сердечного ритма в результате редкой мутации калиевого HERG-канала, которая делала его неработоспособным. Поскольку эти каналы необходимы для окончания сердечного потенциала действия, их потеря приводит к увеличению продолжительности потенциала действия и к увеличению интервала QT на электрокардиограмме. По очевидным причинам это заболевание называют синдромом удлиненного интервала QT, или синдромом LQT. Интервал QT иногда увеличивается очень незначительно, на 2–5 %, однако этого достаточно, чтобы спровоцировать нарушение сердечного ритма, известного как «желудочковая тахикардия типа “пируэт”». Название «пируэт» позаимствовано из балета и относится к искажению формы ЭКГ. Когда такое происходит, сердце теряет способность эффективно перекачивать кровь, в результате быстро наступает кислородное голодание мозга, и человек теряет сознание. Это объясняет, почему больные с синдромом LQT склонны к неожиданным помутнениям сознания. В некоторых случаях аномальная электрическая активность выливается в вентрикулярную фибрилляцию, которая может быть фатальной.
Симптомы синдрома LQT обычно начинают проявляться в подростковом возрасте. Они нередко провоцируются стрессом, например физической нагрузкой, испугом и волнением. Приступы случаются, когда люди бегут за автобусом, ныряют в бассейн, играют в бейсбол или участвуют в телевикторине. Они, как правило, совершенно неожиданны. Большинство больных никогда не жалуются на дурноту или головокружение, они просто теряют сознание. Примерно в третьей части случаев со смертельным исходом люди выглядят совершенно здоровыми и полными сил, а некоторые умирают во сне или при резком пробуждении по звонку будильника. Случаи внезапной сердечной смерти были известны еще Гиппократу, который отмечал, что «те, кто страдает от частых и глубоких обмороков без видимых причин, умирают неожиданно».
Некоторые мутации особенно серьезны, поскольку помимо проблем с сердцем приводят к глухоте: это связано с тем, что такие же ионные каналы находятся в ухе и от них зависит наша способность слышать. Одно из первых описаний приступа со смертельным исходом у человека с этим синдромом дал Мейсснер в 1856 г. Он подробно описал, как глухонемая девочка, посещавшая Лейпцигский институт, потеряла сознание и умерла после публичного обвинения в мелкой краже. Ее смерть произвела сильное впечатление на других детей, которые увидели в этом божественное наказание за плохое поведение. Когда о случившемся сообщили родителям, они не удивились. Как оказалось, в их семье и раньше случались подобные трагические события — один ребенок упал замертво после неожиданного потрясения, а другой скончался после приступа истерики.
Уход из жизни ребенка всегда разрывает сердце, но особенно тяжела неожиданная смерть внешне здорового младенца во сне. Такие ситуации отягощаются подозрениями в насильственном умерщвлении и не так уж редко приводят к привлечению родителей к ответственности и обвинению в убийстве. Однако даже и без этого незнание причины смерти собственного ребенка может стать проклятием всей жизни. Сравнительно недавно выяснилось, что в некоторых случаях причиной смерти младенцев являются мутации ионных каналов, обусловливающие предрасположенность к синдрому LQT, т. е. к неожиданной сердечной смерти. Однако какая доля неожиданных смертей младенцев связана с нарушением сердечного ритма, спровоцированным дефектными ионными каналами, остается тайной. Вместе с тем посмертное тестирование для выявления мутаций ионных каналов желательно не только с точки зрения определения причины смерти, но и потому, что другие члены семьи могут быть бессимптомными носителями той же мутации и, следовательно, находиться под риском.
К счастью, в настоящее время синдром LQT поддается лечению, которое позволяет больным вести сравнительно нормальный образ жизни. Лекарства, известные как бета-блокаторы, предотвращают влияние стресса на сердце и, как правило, обладают высокой эффективностью. Многим больным также имплантируют дефибрилляторы, которые реагируют на нарушение сердечного ритма и генерируют электрический разряд, восстанавливающий нормальное сердцебиение. История терфенадина
Известно, что синдром LQT вызывают мутации во множестве разных генов, в том числе в генах как минимум шести видов ионных каналов (в большинстве своем калиевых). Однако синдром LQT не всегда имеет генетическое происхождение. Его могут также вызывать лекарства, которые блокируют ионные каналы сердца. Терфенадин является очень эффективным антиаллергическим средством, которое в Великобритании одно время отпускалось без рецепта. В 1985 г. было получено разрешение на его продажу в США, где оно получило название селдан. Лекарство быстро стало популярным, и к 1991 г. оно стояло на девятом месте по частоте назначения в Соединенных Штатах. Вместе с тем к этому времени стало известно о ряде случаев возникновения проблем с сердцем у людей, принимавших терфенадин в прописанной им дозировке, в том числе и об увеличении интервала QT с внезапной смертью. В большинстве случаев проблемы возникали у тех, кто принимал также определенные антибиотики, имел нарушения функции печени или уже страдал сердечно-сосудистыми заболеваниями. После этого фармацевтическая компания, выпускавшая лекарство, разослала 1,6 млн писем врачам и фармацевтам с рекомендацией не применять данное средство в описанных выше случаях. Позднее лекарство было вообще изъято из продажи.
Терфенадин обладает подобным побочным действием потому, что он блокирует калиевые HERG-каналы. У большинства людей он не создает проблем, поскольку быстро разрушается в печени с образованием промежуточного продукта обмена веществ, который не блокирует HERG, оставаясь при этом эффективным антиаллергическим препаратом. В результате того, что лекарство принимается перорально, оно сначала проходит через печень, поэтому сердца достигает очень небольшое количество терфенадина. Однако у людей с заболеваниями печени, у которых не хватает ферментов, разрушающих лекарство, или у тех, кто принимает лекарства или вещества (например, грейпфрутовый сок), ингибирующие эти ферменты, появляется риск возникновения нарушений сердечного ритма.
История терфенадина на этом не заканчивается. Очень быстро выяснилось, что многие другие лекарства тоже способны блокировать HERG и, таким образом, вызывать предрасположенность к проблемам с сердцем. В результате в 2001 г. Япония, США и Европейское сообщество постановили, что все новые лекарства должны проверяться на отсутствие влияния на HERG. Последние директивные материалы требуют проведения исследований не только на изолированных клетках и тканях, но и на людях (необходимы тысячи ЭКГ). Изменение регулирования привело к появлению массы небольших биотехнологических компаний, занимающихся HERG-тестированием, и к резкому повышению стоимости разработки лекарств, поскольку многие из них не выдерживают тестирования. Некоторые фармацевтические компании, лекарства которых уже находились на более поздних стадиях испытаний, но, как выяснилось, взаимодействуют с HERG, понесли очень значительные убытки. Мое сердце трепещет
Она: Доктор, со мною что-то не так.
Он: В самом деле? Что случилось?
Она: Каждый раз, когда рядом оказывается мужчина.
Он: Ну и?
Она: Мое лицо заливает краска,
А сердце начинает отчаянно колотиться:
Бум буди-бум буди-бум буди-бум
Буди-бум буди-бум буди-бум буди-бум.

 

Так начинается песня знаменитого дуэта, Софи Лорен и Питера Селлерса. Это очень знакомое чувство: у каждого из нас не раз сердцебиение учащалось в результате волнения или испуга, а сердце колотилось так, будто оно вот-вот разорвется.
Такой результат дает выброс гормона адреналина, определяющего реакцию «бей или беги». Адреналин помогает организму справиться с неблагоприятной ситуацией путем повышения частоты и силы сокращений. С этой целью он открывает дополнительные кальциевые каналы в мембранах клеток сердца. Как следствие уменьшается интервал между импульсами, генерируемыми клетками синусного узла, частота сердцебиения повышается, а также резко увеличивается количество кальция, который выбрасывается из внутриклеточных хранилищ, увеличивая силу сокращения. Адреналин вырабатывается железами, расположенными прямо над почками, и выделяется в кровь в ответ на стресс или физическую нагрузку. Родственное вещество, обладающее аналогичным действием, норадреналин, выделяется нервами, которые возбуждают сердце.
Хотя повышение частоты сердцебиения во время физической нагрузки принципиально важно для адекватного снабжения мышц конечностей топливом и кислородом, слишком высокий ритм вреден. Все дело в том, что сами сердечные мышцы при этом не получают достаточного количества кислорода. Результат — стенокардия, сильная боль в груди, которая может отдавать в левую руку. Стенокардия чаще возникает у людей, коронарные кровеносные сосуды которых сужены из-за атеросклеротических бляшек (жировых отложений на стенках сосудов). Вследствие этого тест на физическую нагрузку нередко используют для оценки состояния коронарных сосудов. Стенокардия возникает не только в результате физической перегрузки, ее может спровоцировать вспышка гнева, волнение или сильные эмоции. Я очень хорошо помню, как во время плавания по каналу из Эймёйдена в Амстердам на небольшой яхте на ее винт намотался обрывок сети и сделал двигатель бесполезным. Этот канал является крупнейшей транспортной артерией, и движение судов там очень интенсивное. Огромные тяжелогруженые и неповоротливые баржи приближались к нам с двух сторон. Пока я пыталась поставить паруса, а мой напарник нырял под дно с ножом в руке, чтобы освободить винт, у капитана случился приступ стенокардии. Он спустился в каюту, раздавил стеклянную ампулу с амилнитритом (или нитроглицерином) и некоторое время вдыхал его пары. Это сняло боль, коронарные сосуды расширились, и приток крови к сердцу усилился.
Нитроглицерин выделяет газ оксид азота, который стимулирует выработку химического вещества, циклического гуанозинмонофосфата, вызывающего расширение кровяных сосудов. Виагра (силденафил цитрат) имеет аналогичное действие: повышая уровень циклического гуанозинмонофосфата в сосудах пениса, она вызывает их расширение и эрекцию. Вместе с тем при одновременном приеме обоих препаратов их действие может суммироваться и приводить к расширению кровяных сосудов всего организма и, как следствие, к резкому падению давления. Так что мужчинам, принимающим нитроглицерин для снятия приступов стенокардии, следует избегать виагры. Интересно, что виагра была открыта случайно учеными, которые занимались поиском средств против стенокардии. Она оказалась не слишком эффективной при клинических испытаниях, и ее наверняка забраковали бы, если бы несколько мужчин, участвовавших в испытаниях, не отказались прекратить прием лекарства из-за необычного (и неожиданного) побочного эффекта.
При учащенном сердцебиении нередко принимают бета-блокаторы. Они ингибируют действие адреналина, предотвращая его присоединение к бета-адренорецепторам в мембране клеток сердца и, таким образом, увеличение частоты сокращений сердца. Бета-блокаторы, однако, могут давать очень неприятный побочный эффект: у некоторых мужчин эти препараты вызывают импотенцию2. Такие случаи, впрочем, встречаются относительно редко, и, как ни удивительно, исследования показывают, что они чаще наблюдаются у мужчин, которые знают о побочном эффекте бета-блокаторов. Не исключено, что проблема в определенной мере связана с опасениями. Похоже, это один из тех случаев, когда слишком много знать опасно. Сердце мое, успокойся
Выделяемые нервами химические вещества, которые возбуждают сердце, могут также замедлять темп сердцебиения, а иногда и полностью останавливать сердце. В 1994 г. я поехала в Хьюстон, штат Техас, для участия в научной конференции. Перелет был длинным и утомительным, а в Хьюстоне стояла невероятная жара, но я все же решила пойти на прием по случаю открытия. После бокала (ну, может быть, двух бокалов) вина у меня подогнулись ноги, перед глазами все поплыло, а голова, казалось, вот-вот взорвется. Следующее, что я помню, это черный туннель в огромном полированном холме, который постепенно превратился в носок мужского ботинка. Потом в поле моего зрения появилось множество ботинок. Я лежала на полу вся в холодном поту и смотрела на ноги своих коллег. Впервые в жизни у меня случился обморок. Причина была простой: резкое повышение активности тормозных нервов моего сердца временно остановило его. Как следствие, мозг перестал получать кислород, и я потеряла сознание. После падения на пол подача крови возобновилась, и сознание вернулось.
За замедление частоты сердцебиения отвечает химический нейромедиатор ацетилхолин. Его выделяют окончания ответвлений блуждающего нерва, который идет от мозга к сердцу (в числе других органов). Ацетилхолин присоединяется к мускариновым рецепторам клеток синусного узла. Такое название эти рецепторы получили потому, что они активируются также мускарином, веществом, встречающимся в некоторых грибах, в том числе в знакомом всем мухоморе Amanita muscaria. Присоединение ацетилхолина к мускариновым рецепторам (которые отличаются от ацетилхолиновых рецепторов скелетных мышц) инициирует цепочку реакций, приводящих в конечном итоге к открытию калиевых каналов. Это позволяет ионам калия уходить из клетки, сдвигая ее внутренний потенциал в отрицательную сторону. Как и в нервных клетках, в результате этого натриевые и кальциевые каналы закрываются, снижая электрическую активность и замедляя частоту сердцебиения.
Сердце постоянно испытывает небольшое тормозящее воздействие блуждающего нерва, именно поэтому в состоянии покоя частота сердцебиения ниже спонтанной частоты импульсов задающих ритм клеток синусного узла. У тех, кто перенес трансплантацию сердца, влияние нервов полностью отсутствует, поскольку блуждающий нерв перерезается во время операции, и как результат частота сердцебиения в состоянии покоя у них выше нормальной.
Атропин блокирует действие ацетилхолина в мускариновых рецепторах и используется в медицинской практике для снижения эффекта нейромедиатора у больных с очень низкой частотой сердцебиения или у тех, чье сердце фактически остановилось. Он помогает ускорить сокращения сердца. В больших количествах, однако, атропин является смертельным ядом. Своим названием он обязан имени самой страшной из трех богинь судьбы в греческой мифологии, Атропос, которая перерезает нить жизни и чью руку невозможно остановить.
Атропин также ингибирует мускариновые ацетилхолиновые рецепторы в других тканях. Один из его самых известных эффектов — это расширение зрачка глаза. Блестящие глаза с расширенными зрачками воспринимаются как более сексуально привлекательные, возможно потому, что оргазм также приводит к расширению зрачков. Атропин широко использовали в косметических средствах дамы при дворе королевы Елизаветы. Они получали его из блестящих черных ягод беладонны, смертельно опасного растения, именно поэтому латинское название беладонны — Atropa belladonna — переводится как «прекрасная дама». Все части этого растения ядовиты для людей, однако птицы могут поедать его семена без всякого вреда для себя. Атропин и его производные используются в сегодняшней медицинской практике для расширения зрачка глаза при обследованиях, в частности при обследовании глазного дна. Не исключено, что его эффект знаком и вам — это лекарство делает глаза очень чувствительными к свету (поскольку мышцы радужной оболочки теряют способность сокращаться при ярком освещении). Как результат человек начинает щуриться на солнце, и ему не рекомендуют садиться за руль. Скачущее сердце
Достаточно лишь разок пробежаться вдогонку за автобусом, чтобы сполна ощутить, какой эффект это физическое упражнение оказывает на частоту сердцебиения. У людей максимальная частота сокращений сердца составляет порядка 200 ударов в минуту, что приблизительно в три раза выше частоты сокращений в состоянии покоя. Частота сердцебиения у других существ может быть намного выше — у колибри, например, во время полета она достигает 1200 ударов в минуту. Такое повышение сердечного ритма происходит в результате выброса норадреналина симпатическими нервами, возбуждающими сердце, и повышения уровня циркулирующего в крови адреналина. Хотя у людей с пересаженным сердцем частота сердцебиения увеличивается в ответ на физическую нагрузку, это происходит более медленно из-за того, что сердце реагирует только на адреналин в крови, а для его выброса в кровь требуется больше времени. Тормозящий эффект ацетилхолина, выделяемого блуждающим нервом, снимается во время физической нагрузки и восстанавливается после ее прекращения: этого не происходит у людей с пересаженным сердцем, поэтому у них сердечный ритм медленнее возвращается в нормальное состояние после прекращения физической нагрузки.
Максимальная частота сердцебиения зависит от возраста (она снижается с годами), однако примерно одинакова у всех людей независимо от их физической формы. Что меняется, так это максимальный объем перекачиваемой крови. У спортсменов частота сердцебиения в состоянии покоя ниже, поскольку регулярные физические нагрузки приводят к увеличению размера сердца и, таким образом, к повышению объема крови, перекачиваемого при каждом сокращении. Как следствие, сердцу требуется меньше сокращений, чтобы перекачать такой же объем крови. Несмотря на одинаковую максимальную частоту сокращений, у спортсменов сердце перекачивает намного больше крови при физической нагрузке, чем у ведущих сидячий образ жизни, — более крупное сердце дает им конкурентное преимущество. Тихий убийца
Хлорид калия — очень эффективное средство, останавливающее сердце. Он действует быстро, бесшумно, почти не оставляет следов и, как говорят, не причиняет страданий (хотя кто это может подтвердить?). Именно поэтому он является излюбленным средством умерщвления в детективных романах вроде «Лучше не возвращаться» Дика Фрэнсиса, где и лошадей, и людей травили путем впрыскивания раствора хлорида калия. В романе «Лучше не возвращаться» вещество покупали в специализированной компании, однако на практике его очень легко может добыть каждый — оно широко доступно и продается как заменитель соли с низким содержанием натрия. Убийство с помощью хлорида калия — это не художественный вымысел: известен целый ряд случаев, когда медсестер обвиняли и даже осуждали за противозаконное убийство пациентов путем инъекций хлорида калия.
Внутривенное вливание хлорида калия после анестезии, погружающей жертву в сон, используется также законно для приведения в исполнение смертных приговоров в некоторых штатах. Доктор Джек Кеворкян применял его в своем «танатроне»3, устройстве для эвтаназии, с помощью которого он помогал уйти из жизни смертельно больным. Доктора Кеворкяна приговорили к тюремному заключению в 1998 г. за убийство второй степени. В это трудно поверить, но хлорид калия в качестве средства для самоубийства пропагандировал бывший немецкий политик Роджер Куш.
Но почему хлорид калия вызывает остановку сердца? При высокой концентрации он деполяризует клетки сердца настолько, что натриевые и кальциевые каналы выключаются (инактивируются). Поскольку эти поры закрыты, потенциал действия не генерируется, и сердце просто останавливается. Однако при медленном вливании хлорида калия сердцебиение, скорее всего, сначала ускоряется, затем наступает вентрикулярная фибрилляция, и только после этого сердце останавливается.
Интересно отметить, что уровень концентрации калия в крови повышается во время физических нагрузок в результате выхода ионов калия из работающих мышц. При сильном физическом напряжении этот уровень бывает достаточным, чтобы остановить сердце. И все-таки мало у кого сердце останавливается во время пробежки. Причина этого ясна не до конца, но по одной из версий все дело в защитном эффекте гормона адреналина, уровень которого также повышается при физических нагрузках. Если концентрация калия в крови не снизится достаточно быстро после прекращения нагрузки, то у человека может развиться сердечно-сосудистый коллапс. Именно поэтому сердечные приступы случаются чаще после завершения партии в сквош, а не во время игры. Виртуальное сердце
Сейчас мы знаем большинство типов ионных каналов, определяющих электрическую активность сердца. Их очень много. У разных видов сердечных клеток могут быть разные комплекты ионных каналов, а плотность и активность каналов одного типа могут варьировать в зависимости от расположения клеток в сердце. В результате очень трудно предсказать, что произойдет с электрической активностью отдельно взятой клетки при модификации конкретного ионного канала, не говоря уже об электрической активности всего сердца. Здесь неоценимую помощь оказывают компьютерные модели.
Ключевой целью нынешних исследований в области кардиологии является создание компьютерной модели сердца, работающей в реальном масштабе времени. Первенство в этой сфере принадлежит Денису Ноблу, профессору из Оксфорда. Его «виртуальное сердце» довольно хорошо моделирует нормальное сердцебиение, эффекты сердечного приступа, генетические мутации, которые вызывают заболевания у людей, и действие лекарств, блокирующих HERG-каналы. В некоторых случаях к ней обращаются даже фармацевтические компании, чтобы понять механизм действия новых лекарств.
Несколько лет назад, когда модель была еще не так хорошо отработана, компания Roche попросила Нобла лично поприсутствовать на слушаниях в Администрации по контролю за продуктами питания и лекарствами в Филадельфии. К своему удивлению, он увидел, что задние ряды в зале были заполнены трейдерами, которые сжимали в руках телефоны и ловили каждое слово. Цена акций Roche на Уолл-стрит двигалась вверх или вниз в зависимости от того, какие новые факты раскрывались и передавались в Нью-Йоркскую фондовую биржу. После выступления профессора один из чиновников заявил: «Я голосую двумя руками за эту программу». «Никаких проблем, — прозвучало в ответ, — но вам придется купить суперкомпьютер стоимостью £5 млн (£10 млн в нынешних ценах), чтобы работать с нею».
Вычислительные мощности увеличиваются настолько быстро, что сегодня для использования этой модели нужен обычный настольный компьютер. Однако моделирование сердечной активности в реальном масштабе времени (именно этого хотелось бы фармацевтическим компаниям) по-прежнему неосуществимо на большинстве современных суперкомпьютеров (по крайней мере на текущий момент).
Назад: Глава 6 Электрические рыбы
Дальше: Глава 8 Жизнь и смерть