Книга: Искра жизни. Электричество в теле человека
Назад: Глава 9 Врата чувств
Дальше: Глава 11 Что есть разум

Глава 10
Все связано

Люди должны знать это от мозга, только в мозгу рождаются наслаждение, радость, смех и шутки, а также наши печали, боль, скорбь и слезы. С его помощью мы, в частности, думаем, видим, слышим, отличаем уродливое от красивого, хорошее от плохого, приятное от неприятного.
Гиппократ. Трактат «О священной болезни»
Здравствуйте! Я рада встрече с вами, и мне особенно приятно, что вы добрались до этого места. Надеюсь, что вам было интересно читать. Или вы просто взяли эту книгу и она случайно открылась на этой странице? Как бы то ни было, задумайтесь на мгновение о том, насколько удивительно то, что я могу так легко общаться с вами через пространство и время. Сделать это мне позволяет огромное число таинственных электрических чудес, происходящих в вашем мозге.
Когда вы читаете (или слышите) мои слова, чувствительные клетки глаз или ушей воспринимают информацию, которую несет свет или звук, и преобразуют ее в электрические сигналы. Но это только начало процесса — информация затем преобразуется в химический сигнал и вновь в электрический однократно или много раз, пока она дойдет от органа чувств до мозга. И информация, которая сначала была разбита на небольшие удобоваримые фрагменты, потом обрабатывается и вновь объединяется в несколько сенсорных карт в поверхностных слоях мозга. Еще более удивительно то, что такая информация — распределение электрических сигналов, проскакивающих по вашим нервным клеткам, — интерпретируется как язык, а дополнительный набор электрических разрядов позволяет распознать слова и понять, что я имею в виду. Если вам нравится, что я говорю, вы можете улыбнуться. А если вы не понимаете меня или считаете мои слова пустыми, то можете чувствовать раздражение и даже (надеюсь, до этого не дойдет) скуку. Это тоже эмоции, вызываемые моими словами, результат химических всплесков в вашем мозге, стимулирующих еще больше нервных клеток. Но самое поразительное, самое невероятное заключается в том, что личность, разговаривающая, пишущая эти слова, — да и ваша личность тоже — заключена в небольшом комке желеобразной массы, которая умещается в пригоршне, весит не более полутора килограмм и называется мозг. Мы электрические создания, вы и я, и представляем собой всего лишь невероятно сложную и непрерывно изменяющуюся совокупность электрических и химических сигналов. Маленькие серые клеточки
Наш мозг — одно из самых сложных устройств на планете. В нем около 100 млрд нервных клеток, и каждая из них связана с многими тысячами других. Это триллионы соединительных линий — их столько же, сколько во всех телефонных системах земного шара вместе взятых, и слишком много, чтобы полностью осознать. Однако мозг — это не просто огромная масса взаимосвязанных нервных клеток, это высокоорганизованная структура, разные части которой специализированы и нацелены на выполнение разных задач.
Самой важной областью мозга — той, что отвечает за наши мыслительные процессы и действия, — является передний или большой мозг. На него приходится примерно 80 % массы человеческого мозга, и он разделен на два зеркальных полушария, каждое из которых взаимодействует в основном с одной стороной тела. По неизвестным причинам каналы связи в нем располагаются крест-накрест: нервы от левой стороны тела идут к правому полушарию, а от правой стороны — к левому. Полушария связаны друг с другом мозолистым телом, информационной супермагистралью мозга: перережьте ее, и вы не сможете сказать, что находится в левой половине поля зрения, поскольку ее образ формируется в правой части мозга, а речь обрабатывается в левой части.

 

На поперечном разрезе мозга человека представлены его основные области.
Наружный слой переднего мозга, так называемая кора головного мозга, образован тонким слоем нервных клеток, имеющим множество складок, которые увеличивают площадь поверхности. Кроме того, складки позволяют более полно использовать внутричерепное пространство. Складчатая структура мозга делает его похожим на ядро грецкого ореха. Именно этот слой клеток толщиной четыре миллиметра позволяет нам думать, осознанно совершать действия, чувствовать, обучаться и помнить, в нем существуют области, специализирующиеся на выполнении разных функций. Под внешней оболочкой из нервных клеток находятся нервные волокна, которые тянутся в разных направлениях и связывают нервные клетки коры друг с другом. Этих соединений так много, что кора головного мозга большую часть времени разговаривает сама с собой.
Под передним мозгом лежат области, которые участвуют в управлении эмоциями, в регулировании аппетита и сна и которые действуют как ретрансляционные узлы, обрабатывающие информацию от органов чувств и направляющие ее в кору головного мозга. Еще ниже, у основания мозга, находится стволовая часть, которая связывает верхние области головного мозга со спинным мозгом. Она управляет всеми нашими бессознательными действиями: здесь находятся центры, регулирующие дыхание, кровяное давление, частоту сердцебиений, пищеварение и т. д. Эти области могут жить и функционировать, даже когда нарушаются функции головного мозга более высокого уровня, такая патология известна как устойчивое вегетативное состояние, а людей, пребывающих в нем, нередко называют «овощами». Стволовая часть мозга имеет структуру, сходную с той, что есть у многих других живых существ, и она выполняет ту же роль — иногда ее даже называют рептильным мозгом.
В задней части мозга чуть выше стволовой части расположен мозжечок (или «малый мозг»), который помогает сохранять равновесие и координирует движения. Он участвует в выполнении сложных моторных задач, таких как катание на велосипеде, вождение автомобиля и исполнение заглавной партии в балете «Сильфида». Повредите его, и вы не сможете ходить нормально, а будете шататься как пьяный.
Главный герой многих повестей Агаты Кристи, детектив Эркюль Пуаро, очень гордился своими «маленькими серыми клеточками». Он называл их так потому, что, хотя живой мозг имеет розовато-коричневую окраску, заспиртованные нервные клетки становятся серыми, и их называют серым веществом. В то же время нервные волокна выглядят белыми в заспиртованном виде (из-за миелиновых оболочек), поэтому их называют белым веществом. Мозг, однако, состоит не только из нервных клеток. В нем почти столько же поддерживающих клеток, называемых глией, которые помогают ориентировать развивающиеся нервные клетки в нужном направлении, снабжают их питательными веществами, покрывают миелиновой оболочкой и защищают от инфекций. Деликатные ткани мозга окружены мембранами (оболочками головного мозга) и защищены черепом. В черепной коробке мозг плавает в море цереброспинальной жидкости, которая выполняет роль амортизатора и защищает мозг от повреждения при ударах головы точно так же, как околоплодная жидкость защищает ребенка в утробе матери.
Мозг обильно снабжается кровью, и многие умирают, а еще больше людей становятся инвалидами в результате закупорки или разрыва кровеносных сосудов мозга, например при инсульте. Прекращение кровоснабжения в этом случае приводит к гибели прилегающих нервных клеток из-за недостатка кислорода и питательных веществ, а также накопления токсичных продуктов жизнедеятельности. Нервные клетки, однако, не имеют непосредственного контакта с кровью, их защищает гематоэнцефалический барьер. Он представляет собой слой клеток, выстилающих мельчайшие кровеносные сосуды и так плотно прижатых друг к другу, что они не допускают смешения крови и цереброспинальной жидкости. Гематоэнцефалический барьер — это надежная защита от токсичных веществ и возбудителей инфекции, таких как бактерии и вирусы, переносимые током крови.
Ствол головного мозга соединяется непосредственно со спинным мозгом. Когда вы хотите пошевелить пальцами рук и ног, сигналы головного мозга идут к их мышцам через спинной мозг и периферийные нервы. Нервы, которые выходят из спинного мозга в поясничной области и ниже, обслуживают мышцы ног; а те, что выходят из него в области шеи, передают сигналы рукам. Повреждение нервов спинного мозга ведет к прерыванию передачи электрических сигналов и к параличу или потере чувствительности, поскольку все, что находится ниже повреждения, перестает функционировать должным образом. Люди с повреждениями спинного мозга в средней части спины теряют способность ходить, но по-прежнему могут дышать и двигать руками. А при переломе шеи человек может потерять подвижность и чувствительность рук. Некоторые повреждения приводят даже к потере способности самостоятельно дышать.
Поврежденные нервные волокна головного и спинного мозга так и не восстанавливаются, и люди с такими повреждениями навсегда остаются инвалидами. Это было известно еще древним египтянам, которые указывали, что человек со «смещением шейных позвонков» не чувствует рук и ног и не поддается излечению. За прошедшие 3700 лет ничего не изменилось. Однако это не относится к периферическим нервам. Мой отец поранил пальцы и повредил их нервы, когда регулировал лезвие в старой газонокосилке. Его пальцы потеряли чувствительность, и это было страшным ударом для гончара. Но потом, примерно в течение года, чувствительность восстановилась — нервы отрастают очень медленно, менее чем на два миллиметра в день. Как увидеть отдельную клетку
Отдельные клетки головного мозга настолько крохотны, что их невозможно было увидеть до изобретения микроскопа. Но даже и после этого огромная масса переплетенных клеток мозга и нервных стволов не позволяла ясно разглядеть отдельные клетки без специального контрастного красителя. Именно такой краситель и создал Камилло Гольджи в 1871 г.
Гольджи работал врачом в психиатрической больнице в северной Италии, но его истинным увлечением было изучение анатомии головного мозга, которым он занимался на своей старой кухне, переоборудованной в лабораторию. После многочисленных проб и ошибок он обнаружил, что сочетание бихромата калия и нитрата серебра окрашивает произвольно отдельные нервные клетки, но зато целиком. Как ни парадоксально, самым главным в методе Гольджи является то, что он срабатывает исключительно редко, но благодаря этому окрашиваются лишь несколько клеток и появляется возможность разглядеть паутинообразную структуру отдельной клетки во всей ее красе со множеством тончайших дендритов и нитевидным аксоном.

 

Рисунок нейрона Пуркинье (А) и шарового нейрона (В) из мозга голубя, выполненный Сантьяго Рамоном-и-Кахалем в 1899 г. Клетки окрашены с помощью метода Камилло Гольджи. Небольшие «узелки» на дендритах — это дендритные шипики.
Выдающийся испанский анатом Сантьяго Рамон-и-Кахаль впоследствии сделал ряд изумительно красивых рисунков нервных клеток, визуализированных с помощью метода окрашивания Гольджи. У него были способности к рисованию, и он поначалу хотел стать художником, но отец убедил его заняться медициной. В этом случае ему понадобились две профессии. Опираясь на свои наблюдения, Кахаль предположил, что каждая нервная клетка является самостоятельным образованием и физически отделена от соседних клеток. Это привело к спору с Гольджи, который думал иначе. Правым, в конце концов, оказался Кахаль.
Поскольку окрашивание серебром визуализирует в деталях очень небольшое число нейронов, оно не позволяет увидеть, как нейроны взаимосвязаны. Для этого нужно было как-то пометить соседние клетки другими цветами. Необходимый процесс разработали в 2007 г., когда появилась возможность, используя молекулярно-генетические методы, пометить нейроны разными цветами. По аналогии с экраном телевизора, где всего три цвета воспроизводят множество оттенков, три разные генетически кодируемые флуоресцентные краски окрасили мозг мыши в разные цвета. В одной из областей похожего на радугу мозга мыши можно было различить более 90 разных оттенков и, таким образом, проследить соединения между нейронами. Получился не просто научный результат, а настоящее произведение искусства. Как разобрать мозг на части
Получение представления о том, как устроен мозг, как информация перетекает из одной области в другую и как информация кодируется и обрабатывается, является одной из самых сложных задач неврологии. В электронных приборах, например в радиоприемниках, электрическая схема детально раскрывает все соединения между компонентами и дает представление о том, как по цепи передается информация. На нашей планете есть только одно живое существо, для которого составлена полная схема нервной системы, и это существо — микроскопический червь Caenorhabditis elegans, живущий в почве. Он является научной супермоделью, которая привлекает к себе больше глаз, чем проход манекенщиц по подиуму во время демонстрации последних новинок моды. Поскольку червь так мал, а его нервная система предельно проста, мы знаем каждую его нервную клетку и все их соединения. У него 302 нейрона, около 5000 химических синапсов, 600 электрических синапсов и 2000 нервно-мышечных соединений.
Невероятная сложность мозга человека и трудность идентификации отдельных соединений превращает создание аналогичной схемы для нашего мозга почти в неразрешимую проблему. Вдобавок такая схема у каждого человека своя, да еще и изменяется по мере того, как он приобретает новые навыки и опыт. Вместе с тем нельзя сказать, что мы совершенно не знаем, как наш мозг работает.
Предположение о том, что разные части мозга специализируются на выполнении конкретных функций, впервые выдвинул Франц Йозеф Галль в начале XIX в. После тщательного изучения черепов своих друзей, пациентов, обитателей местной психиатрической лечебницы и заключенных в тюрьме он пришел к выводу, что разные области мозга отвечают за разные проявления мыслительной деятельности, такие как отвага, осторожность, целеустремленность, остроумие и технические навыки, и что это отражается на размере и форме окружающего мозг черепа. Харизматический оратор, Галль разъезжал по всей Европе с публичными лекциями, пропагандирующими его идеи, и даже как-то раз выступил перед королевской семьей в Германии. Он также собрал коллекцию из 300 человеческих черепов и более сотни гипсовых слепков. Однако, несмотря на то, что френология, т. е. практика определения характера человека по бугоркам на его голове, на некоторое время вошла в моду, у нее не было научной основы.
Первые реальные представления о том, какую роль играют разные области мозга, были получены путем наблюдения за людьми, мозг которых был поврежден в результате травмы или болезни. Один из самых известных случаев был связан с человеком по имени Финеас Гейдж. Гейдж был бригадиром и 13 сентября 1848 г. руководил группой рабочих, занятых на строительстве железнодорожного полотна недалеко от города Кавендиш в штате Вермонт. Он занимался подготовкой взрыва большого валуна и с помощью стального прута (диаметром около трех сантиметров, длиной больше метра и весом порядка шести килограммов) утрамбовывал порох в просверленном отверстии. К несчастью, прут выбил искру при ударе о камень, порох воспламенился, и прут пронзил череп Гейджа. Он вошел в левую щеку, повредил глаз, вышел через макушку и, пролетев 25 метров, упал на землю. Гейдж «опрокинулся на спину, его конечности несколько раз конвульсивно дернулись», но, как ни удивительно, уже через несколько минут он разговаривал, смог сидеть в экипаже, на котором его везли в гостиницу, и даже прошел один лестничный пролет. Врач, который первым осматривал его, отказывался верить в произошедшее, пока Гейджа не стошнило и «от спазма из его головы не выплеснулось на пол примерно полчашки мозгового вещества». Второй врач, прибывший через полтора часа, нашел Гейджа в сознании, но отметил, что «он и вся его кровать были перепачканы запекшейся кровью».
Хотя Гейдж и выздоровел физически, скоро стало ясно, что травма изменила его личность. Прежний уравновешенный, дружелюбный, энергичный, трудолюбивый уважаемый всеми человек стал трудно сдерживаемым, нерешительным, несговорчивым и «отчаянным сквернословом». Это был, как говорили его друзья, совершенно другой человек. История Гейджа показывает, что особенности нашей личности и эмоции связаны с функционированием определенных областей мозга. Повреждение лобной доли коры головного мозга привело к неуместному поведению Гейджа и к потере социальных тормозов.
Другим несчастным, чей недуг приоткрыл завесу тайны над локализацией различных функциональных областей мозга, был месье Леборн, который не мог говорить и произносил только слово «тан», когда Поль Брока осматривал его в 1861 г. Вскоре после этого Леборн скончался, и вскрытие показало, что небольшая область левого полушария его головного мозга была повреждена. Эта часть мозга, увековеченная как область Брока, отвечает за управление речевой функцией. Несколько лет спустя Карл Вернике нашел несколько человек, страдающих другим расстройством речи: они, хотя и могли ясно и бегло произносить слова, говорили бессвязно, их фразы представляли собой бессмысленный поток слов, однако структура предложений была более-менее правильной, например: «Я не могу говорить все, что я делаю, и часть части я могу идти как надо, но я не могу отличить других людей». Сейчас мы знаем, где находится область мозга, участвующая в управлении речью. Область Вернике находится на некотором отдалении от области Брока ближе к задней части мозга.
Для большинства целей левое и правое полушария нашего мозга симметричны. Речевой центр, однако, находится в основном в левом полушарии. Нарушение кровообращения левого полушария может, таким образом, привести к параличу правой половины тела и к потере речи. В то же время нарушение кровообращения правого полушария приводит к параличу левой половины тела, но очень незначительно затрагивает речь. Удивительно, но люди с повреждением области Брока могут спеть слова, которые они не в состоянии произнести, — по всей видимости, пением управляет совершенно другая часть мозга. Внешнее стимулирование как инструмент исследования
Другим способом определения, какую функцию выполняет та или иная область мозга, является прямое стимулирование слабым электрическим током. Одним из первых, кто стал систематически пользоваться этим способом, был Эдуард Гитциг. В середине 1800-х гг. он экспериментировал на прусских солдатах, у которых в результате ранения был раздроблен череп и часть мозга оказывалась обнаженной. Гитциг заметил, что воздействие слабым электрическим током непосредственно на мозг вызывает непроизвольное сокращение мышц. Позднее эксперименты на собаках показали, что небольшой участок коры, который сейчас называют двигательной областью коры головного мозга, управляет движениями определенных частей тела.
Аналогичным образом были локализованы области коры, которые отвечают за восприятие звуков, зрительных образов, а также за осязание. На верхней части головного мозга находится соматосенсорная система. Здесь сигналы, поступающие от рецепторов в коже, организуются таким образом, что один и тот же участок кожи связывается с одной и той же областью мозга: голени, стопы, пальцы рук и пальцы ног связаны со своими собственными частями мозга. Более чувствительным частям тела, таким как губы, пальцы и гениталии, соответствуют более крупные области мозга с более значительным числом нейронов, чем менее чувствительным частям, например пояснице. Аналогичным образом сигналы от каждой части поля зрения глаз поступают к своему участку зрительного центра коры в задней части мозга, а звуки распределяются в соответствии с частотой в слуховой зоне коры головного мозга. На самом деле похоже, что для каждого чувства в мозге создаются несколько подобных карт: в мозге, как в хорошей машине, может предусматриваться дублирование. Информация, однако, не поступает в центры обработки напрямую, она проходит через множество ретрансляционных станций и в значительной мере обрабатывается по пути.
Возможность вызывать ощущение и действие простым стимулированием определенной области мозга имеет очень большую клиническую значимость. Она нередко используется при проведении операций на мозге, поскольку позволяет убедиться, например, в том, что хирург, удаляющий опухоль, иссекает нужный участок и ничего больше. Во время такой операции пациент находится в сознании и может сказать, что он чувствует: операция безболезненна по той причине, что в мозге нет болевых рецепторов, чувствительность болевых волокон в коже, покрывающей череп, подавляют с помощью местной анестезии. Подобные операции также дают полезную информацию о том, где находятся центры памяти и обработки слов. Мозговые волны
Поначалу к исследованию мозга подходили во многом подобно маленькому ребенку, разбирающему новую заводную игрушку, чтобы посмотреть, как она устроена. Позднее появились неинвазивные методы изучения работы мозга, которые позволяют просто наблюдать за происходящим с помощью регистрации активности мозга.
Первым из таких методов стала электроэнцефалограмма (ЭЭГ), т. е. запись мозговых волн. Если электрическую активность клеток сердца можно зарегистрировать с помощью электродов, прикрепляемых к грудной клетке, то происходящее в мозге можно записать через множество электродов, прикрепляемых к черепу с помощью электропроводного геля. Электроды воспринимают ничтожные изменения напряжения, возникающие в результате активности миллионов нервных клеток в поверхностном слое мозга. Мозговые волны выглядят как колебания напряжения, частота и амплитуда которого непрерывно меняется в зависимости от того, какие области мозга проявляют активность, а какие переходят в состояние покоя. ЭЭГ сложнее снять, чем электрокардиограмму, и намного труднее расшифровать. Это немного смахивает на попытку получить представление о сложных взаимоотношениях между людьми в большом городе, прослушивая одновременно все их телефонные разговоры: несколько не связанных друг с другом разговоров ни о чем не говорят, а когда их количество огромно, выделить отдельные разговоры становится невозможно.
Это означает, что ЭЭГ имеет довольно ограниченную ценность как исследовательский инструмент. Тем не менее она все же дает некоторое представление о том, что делает мозг, и особенно полезна при исследованиях сна и приступов эпилепсии, во время которых происходит заметное изменение ЭЭГ. Первая ЭЭГ была снята в 1924 г. Гансом Бергером, однако лишь несколько лет спустя ее клиническая ценность стала очевидной, когда заметили, что эпилептический припадок сопровождается очень значительным усилением активности мозга — фактически «электрическим землетрясением». Позднее выяснилось, что ЭЭГ можно использовать не только для регистрации приступа, но и для выяснения его происхождения.
ЭЭГ применяется также для контроля глубины анестезии и для того, чтобы определить, умер человек или он находится в коме. В большинстве стран смерть определяется как прекращение электрической активности мозга, и юридически человек считается умершим, когда исчезают мозговые волны, хотя остальные клетки могут сохранять жизнедеятельность еще долго после этого. Такое определение не только разумно, но очень важно для трансплантации органов. Оно означает, что сокращения сердца умершего, а вместе с ним и жизнь большинства органов можно поддерживать искусственно, сохраняя их для трансплантации и спасения другого человека. Наблюдение за работой мозга
В последние десятилетия новые средства визуализации значительно расширили наши возможности по изучению живого мозга. Сканирование позволяет глубоко заглянуть в мозг и дает намного более качественную картину происходящего в разных областях, чем ЭЭГ. В отличие от ЭЭГ при сканировании не происходит прямой регистрации электрической активности мозга. Функциональная магнитно-резонансная томография (фМРТ), например, обеспечивает регистрацию кровотока в мозге, а позитронно-эмиссионная томография (ПЭТ) — метаболическую активность клеток головного мозга. Оба эти метода считаются связанными с электрической активностью мозга, поскольку повышение активности нервной клетки сопровождается ростом потребления энергии и, следовательно, усилением обмена веществ. Нервные клетки не имеют внутренних запасов питательных веществ, и поэтому, чем выше их активность, тем больше глюкозы должна доставлять к ним кровь. В результате приток крови к активизировавшейся области мозга тоже повышается.
Функциональная магнитно-резонансная томография является ценным инструментом изучения работы мозга, поскольку этот метод можно применять для обследования добровольцев, находящихся в сознании. Он показал, как меняется характер электрической активности мозга во время сна, при анестезии, при эпилепсии и при выполнении обыденных задач вроде обучения, запоминания, разговора и даже обдумывания. Простое сканирование мозга человека, когда ему задают вопросы, показывают картинки или просят подумать о чем-нибудь, позволяет идентифицировать активную область мозга. Попросите кого-нибудь подумать об игре в теннис, и поступление крови к двигательной области коры головного мозга возрастет при мысли о взятии свечи или о сильной подаче. Области Брока и Вернике включаются, когда вы говорите, подтверждая то, что было обнаружено при обследовании больных с поврежденным мозгом, а центры удовольствия резко активизируются, когда курильщик думает о сигарете.
Технология сканирования мозга изменила наши представления о работе мозга и том, что мы думаем о самих себе. Однако не следует забывать, что даже самая маленькая область мозга, которую позволяет различить сканирование, содержит многие сотни или тысячи нейронов и регистрируется (косвенно) лишь их суммарная активность. Поэтому существует огромный разрыв между нашими глубокими и детальными знаниями о том, что происходит на уровне отдельной нервной клетки, и представлениями о взаимосвязанной работе нервных клеток, порождающей электрическую активность мозга.
МРТ- и ПЭТ-сканеры являются также бесценными диагностическими инструментами в клинической практике. Они позволяют выявлять поврежденные области мозга, опухоли и участки мозга, с которыми связаны эпилептические припадки. В случае операции наличие детальной картины с точным расположением проблемного участка и его связями с ключевыми областями мозга снижает вероятность побочных повреждений.
Не так давно группа ученых из Кембриджского и Льежского университетов показала, что можно связываться с мозгом людей напрямую, если просто попросить мысленно ответить на заданный вопрос «да» или «нет», а потом проанализировать томограмму. Не то чтобы можно определить, думает ли человек «да» или «нет», но если вас приглашают поиграть в теннис и вы соглашаетесь, то можно зарегистрировать реакцию двигательной области коры вашего мозга, а если вам предлагают показать, где находится ваш дом, а вы не хотите этого делать, то возбуждается совсем другая область мозга. Локализация активности мозга настолько характерна, что даже неопытный наблюдатель может идентифицировать ответ испытуемого почти со 100 %-ной точностью. Хотя такая возможность общаться с кем-нибудь кажется довольно фантастической, еще более невероятным является тот факт, что четыре из 23 больных в устойчивом вегетативном состоянии могут давать правильные ответы на вопросы при условии, конечно, что они сохранили по крайней мере минимальное сознание и способность слышать, но полностью отрезаны от мира в результате абсолютной неподвижности и отсутствия возможности даже моргать. Как мозг видит
Исследования ясно показывают, что разные области мозга специализируются на разных функциях. Загадка заключается в том, как мозг кодирует и обрабатывает информацию и как разные части мозга взаимодействуют друг с другом. Хотя мы очень далеки от полного понимания этих процессов, в последние полвека достигнут значительный прогресс. Возьмем для примера зрение.
Зрение — это результат взаимодействия между глазами и мозгом, поскольку для чувственного восприятия одних органов чувств недостаточно. Откройте глаза, и вы увидите трехмерный цветной мир, однако на сетчатке реально формируется бесцветное, искаженное и перевернутое изображение, которое она преобразует в мириады электрических сигналов. Они в определенной мере обрабатываются в глазу, а затем передаются через зрительный нерв в мозг, различные области которого выполняют роль ретрансляционных и обрабатывающих станций. В конечном итоге информация в виде электрических импульсов поступает в зрительный центр коры головного мозга, находящийся в затылочной части.
Здесь электрические сигналы объединяются, формируются зрительные образы, здесь же происходит их осмысление. Нервные клетки, которые реагируют на один и тот же тип зрительных сигналов, сосредоточены в одной и той же части зрительного центра коры головного мозга. Разные нейроны выполняют разные задачи. Одни нервные клетки, по-видимому, специализируются на детектировании движения, другие активируются, только когда в поле зрения оказывается лицо человека, а третьи, называемые зеркальными нейронами, возбуждаются, когда выполняется определенное действие и при наблюдении, как это действие выполняется другими. После распознавания зрительного образа сигналы поступают в миндалевидное тело — эмоциональный центр мозга, где оценивается значимость этого образа. Кто к вам приближается — любимый человек или грабитель? Или это автобус, которого вы ждете? А может быть, вы просто любуетесь красивым пейзажем?
Вы должны затем решить, требует ли то, что вы видите, какого-либо действия. С этой целью сигналы посылаются в префронтальную кору, исполнительную область мозга, где принимается решение, например, помахать рукой, чтобы остановить автобус. В этом случае сигналы направляются в двигательную область коры, которая приводит в действие необходимые мышцы руки. Таким образом, сигналы, поступающие от глаз через зрительный нерв, приводят к генерированию шквала сложных сообщений, которые мгновенно передаются из одной части мозга в другую и обратно. Не забывайте, что мы еще не коснулись того, как зрительная информация интегрируется с информацией от других органов чувств и как складывается всеобъемлющая чувственная картина мира или как эта картина остается в памяти.
Глазам, конечно, нельзя полностью доверять. Мы не всегда видим именно то, что нам кажется, как показывает множество оптических иллюзий. Этот эффект используют многие художники. Зрительное восприятие ненадежно в силу того, как наш мозг обрабатывает информацию. Мы непрерывно предсказываем мир, предполагаем, например, куда отскочит мяч в игре, чтобы поймать его до того, как он коснется земли. Когда модели, которые мы конструируем в голове и по отношению к которым мы оцениваем чувственную информацию, не соответствуют реальности, возникают иллюзии. В левой части рисунка, приведенного далее, мы видим несуществующий треугольник, поскольку наш мозг подсознательно дорисовывает отсутствующие линии. В центре рисунка в соответствии с законами перспективы железнодорожное полотно сужается с удалением, и в результате нам кажется, что светлые полоски имеют разный размер, даже если кто-то говорит, что они одинаковы. На рисунке в правой части мы можем видеть либо два лица, либо подсвечник, но не то и другое одновременно. Понятно, что изображение не меняется, — это просто наш мозг так интерпретирует его. Как показывают такие иллюзии, наше восприятие реальности является результатом совместной деятельности мозга и органов чувств.

 

Это особенно легко продемонстрировать на примере цветного зрения. Белая бумага выглядит белой даже при желтом свете, поскольку мы привыкли к тому, что она белая. Удивительные картины Патрика Херона показывают, что мы судим о цветах в зависимости от окружения, в котором они находятся. Тот же желтый, например, выглядит иначе, когда находится рядом с другими цветами. Древние художники пользовались этим феноменом, чтобы создать иллюзию цвета, для которого не было подходящей краски (например, для розовато-лилового цвета). Мы можем даже видеть цвет, которого нет: черно-белое изображение кажется цветным, когда его быстро вращают. А если нарушается кровоснабжение зрительного центра коры головного мозга, то мир становится серым — такое иногда случается с боксерами после травм головы.
Слепота не всегда является результатом повреждения глаз. Она может наступить при повреждении областей мозга, отвечающих за обработку зрительной информации, например в результате инсульта. Любопытно, что некоторые люди, которые не могут ничего видеть и считают себя слепыми, способны правильно «угадывать», кто сидит за столом перед ними, или правильно выбирать предмет, когда их просят об этом. Такое «слепозрение» показывает, что мы можем видеть предметы, не осознавая этого. По всей видимости, существует как минимум два пути обработки зрительной информации в мозге, один из которых является осознанным, а другой нет. На что мы обращаем внимание
Мозг непрерывно фильтрует поступающую в него информацию. Посмотрите. Фактически в фокусе находится только центр нашего поля зрения, однако мы видим все поле и очень резко. Это происходит потому, что наши глаза постоянно движутся, фокусируясь на разных частях поля зрения, а мозг складывает эти части в цельную картину. Мы даже не подозреваем о том, что это происходит, поскольку мозг отсекает все зрительные сигналы в то время, когда глаза движутся. Это объясняет, почему, когда мы смотримся в зеркало, сами не видим, как глаза непрерывно поворачиваются туда-сюда, но сторонний наблюдатель видит. Аналогичным образом вы не замечаете разговоров вокруг, а слышите только человека, с которым разговариваете, если, конечно, никто не произносит ваше имя, и тогда вы резко переключаете внимание. Наша способность воспринимать самую важную информацию и отбрасывать всю остальную очень ценна, но она может также вводить нас в заблуждение.
Я хорошо помню один вечер, когда мне и группе других ученых предложили посмотреть фильм о матче между командами, игроки одной из которых были одеты в синюю форму, а другой — в красную. Этот фильм сейчас очень хорошо знаком многим, но тогда он был новинкой. Нас попросили подсчитать, сколько раз каждая команда принимала мяч. Я прямо-таки обмерла от неожиданности, когда после просмотра лектор сказал, что числа его не интересуют, а он хочет знать, кто из нас видел гориллу. Гориллу?! Я лично ничего такого не видела, но, к моему удивлению, четыре человека заявили, что они видели. Во время повторного просмотра гориллу видели уже все — человек в костюме гориллы появлялся в центре экрана, бил себя руками в грудь и удалялся. Как же я могла не заметить его? Это была убедительная демонстрация того, как мозг, сконцентрированный на одном, отвергает информацию обо всем остальном. Дар цветного слуха
Представьте себе возможность видеть звук и слышать цвета — обычное дело при приеме некоторых галлюциногенных веществ, однако некоторые люди могут делать это и без помощи фармакологических препаратов. Одним из самых известных людей с такими способностями был физик Ричард Фейнман, который написал: «Когда я смотрю на уравнения, то вижу буквы цветными, не знаю почему. Когда я разговариваю, то вижу смутные образы функций Бесселя из книги Янке и Эмде со светло-коричневыми символами j, слегка фиолетово-синими n и темно-коричневыми x, которые летают вокруг. Хотелось бы знать, как их видят студенты». Другим синестетиком, обладающим даром «слышать цвет», был Владимир Набоков, который ярко представил цветовую гамму алфавита, где были зеленые буквы, включая «f цвета ольхового листа, p цвета незрелого яблока и t фисташкового цвета, и синяя группа из «x сине-стального цвета, z цвета грозовой тучи и k черничного цвета». Как видно из этих описаний, синестезия индивидуальна и слова и буквы не всегда имеют один и тот же цвет: буква x, например, у Набокова была синей, а у Фейнмана — темно-коричневой.
Этот феномен не ограничивается буквами. Великий джазовый музыкант Дюк Эллингтон воспринимал в красках тембр звука. Он писал: «Я слышу ноту, взятую любым членом нашего оркестра, и она имеет цвет. Я слышу эту же ноту, взятую кем-то другим, и у нее другой цвет. Когда я слышу последовательность звуков, я вижу примерно те же цвета, что и вы, но мне они представляются в текстурах. Если играет Гарри Карни, то нота “ре” представляется темно-синим холстом. Если играет Джонни Ходжес, то нота “соль” становится светло-голубым атласом». А Лист поразил музыкантов Веймарского оркестра, когда сказал: «Пожалуйста, джентльмены, чуть больше синего, будьте добры! Здесь звук требует этого!» Существуют люди, которые могут чувствовать вкус слов или музыкальных тонов. У них есть дополнительное измерение жизни, которого лишено большинство из нас.
При синестезии палитра чувственных восприятий перемешивается. Смешение происходит не в органах чувств, а в мозгу, хотя, как и где именно, неясно. Томограммы мозга показывают, что область, отвечающая за обработку цветовой информации (веретенообразная извилина), находится в непосредственной близости к области, где происходит обработка чисел. Это позволяет предположить, что причиной, по которой Набоков, Фейнман и другие видели цветные цифры, могут быть перекрестные связи. Возможно, нечто подобное происходит и когда другие чувственные восприятия смешивают таким удивительным образом.
Синестетики могут не подозревать о своей необычности некоторое время, просто потому, что они не ожидают от других людей иного восприятия мира. Только обнаружив, что, например, друзья не запоминают телефонные номера по их цвету, они делают открытие. У Набокова это произошло в семилетнем возрасте, когда он строил пирамиду из кубиков с буквами и сказал своей матери, что буквы покрашены неправильно. Как оказалось, она тоже видит буквы цветными. Синестезия, похоже, передается по наследству. Мигрень
Я, к сожалению, не синестетик, но иногда и у меня возникают необычные зрительные образы. В моем случае все, как правило, начинается с того, что мир начинает представляться мне в виде размытых пятен, будто я смотрю через стекло автомобиля во время сильного дождя, а стеклоочиститель не работает. Бывает также, что перед глазами появляются яркие разноцветные звездочки или переливающиеся змейки, сопровождающиеся звуками «Бах! Трах!», как в комиксах или на картинах Роя Лихтенштейна. Мне бы радоваться такому красочному зрелищу, если бы не его продолжение — приступ мигрени. Очень быстро подкатывает тошнота, обычно заканчивающая рвотой, я начинаю болезненно реагировать на свет, а голова моя просто раскалывается от боли с одной стороны. В общем, я чувствую себя совершенно разбитой. Единственное спасение — закрыться в темной комнате и ждать, пока приступ не кончится.
Я не одинока. Многие страдают от этой ужасной разновидности головной боли, хотя и не все испытывают такие же признаки ее приближения. Яркие цветовые образы и искажение зрительного восприятия отображаются, видимо, не случайно, многими писателями и художниками, включая Вирджинию Вулф и Льюиса Кэрролла. Вирджиния Вулф как-то заметила, что «у англичанина, который смог передать размышления Гамлета и трагедию короля Лира, не нашлось слов, чтобы описать ощущение озноба и головной боли». Это непередаваемо ужасная вещь. Рисунки Хильдегарды Бингенской и описание ярких точек света, затмевающих звезды, свидетельствуют о том, что и у нее случались мигрени.
Одним из объяснений необычных зрительных образов, сопутствующих мигрени, является то, что во время приступов стимулируется электрическая активность зрительного центра коры головного мозга, и волна возбуждения, распространяясь по коре, вызывает цветовые и зрительные иллюзии. Однако эта гипотеза, как и гипотеза относительно происхождения самой головной боли, остается спорной. Ясно лишь то, что в некоторых семействах наблюдаются тяжелые формы мигрени, вызываемой мутацией в кальциевых и калиевых ионных каналах, которая приводит к повышенной электрической активности. У некоторых людей эта активность настолько сильна, что повреждает нервные клетки и в конечном итоге лишает способности ходить. Есть основание считать, что повышенная электрическая активность также лежит в основе более распространенных видов мигрени. Мало радости сознавать, что ужасная головная боль не только изводит вас, но и повреждает мозг. Баланс сил
Современная наука, как мы видели, уже может составить примерную карту мозга. В целом мы знаем, какие области участвуют в обработке тех или иных видов информации. Мы можем заглядывать в живой мозг, когда он выполняет различные функции, и видеть, какие области активируются, а какие тормозятся. Но что происходит на уровне самих нервных клеток? Как они связаны друг с другом и как они общаются друг с другом? Критическим элементом этого гигантского механизма, нашего мозга, являются синапсы, где, как выразился Кахаль, нервные клетки обмениваются «протоплазменными поцелуями, межклеточными фразами, в которых, по всей видимости, и заключается финальный экстаз грандиозного любовного романа».
Дело в том, что синапсы бывают не только нервно-мышечными. Они имеются также в местах прилегания нервных и железистых клеток, а также, что важнее, между самими нервными клетками. В головном мозге несколько сотен триллионов синапсов, а в спинном мозге — еще многие миллионы. Типичный нейрон головного мозга контактирует с несколькими тысячами других клеток. Именно эта невероятная мозаика соединений лежит в основе сложного поведения высших животных, включая вас и меня.
Одни синапсы являются возбуждающими, в них нейромедиатор вызывает возбуждение следующей клетки, стимулирует передачу импульса, другие — тормозящими, в которых нейромедиатор выключает следующую клетку в цепочке, подавляет ее активность. Большинство нервных клеток получают одновременно множество возбуждающих и тормозящих сигналов, и их реакция определяется балансом сил противоположных сигналов. В таких системах распределение сигналов во времени имеет критическую важность. Тормозящий сигнал будет неэффективным, если он поступит после возбуждающего сигнала, а возбуждающий сигнал может оказаться блокированным при поступлении одновременно с тормозящим сигналом. Дело осложняется тем, что синапсы в пресинаптических нервных окончаниях могут предотвращать выброс нейромедиатора. Таким образом, предсказать реакцию даже одной клетки в электрической цепи крайне сложно.
Если в нервно-мышечных синапсах основным нейромедиатором является ацетилхолин, то в мозге масса других нейромедиаторов и их рецепторов. Основной возбуждающий нейромедиатор в мозге — глутамат натрия, который лучше известен как искусственный усилитель вкуса, добавляемый во многие блюда китайской кухни. Избыток глутамата вызывает чрезмерное возбуждение целевых клеток и может приводить к их гибели. Глутамат, таким образом, представляет собой двуликое вещество, которое принципиально важно для нормальной активности мозга, но способно полностью разрушать нервные клетки. Как следствие, в процессе эволюции клетки выработали способы быстрого уменьшения концентрации глутамата в мозге до низкого уровня, и во всех местах, где выделяется глутамат, присутствуют специальные вещества-транспортеры, которые захватывают внеклеточный глутамат и закачивают его обратно в клетки. Основным тормозящим нейромедиатором в головном мозге является гамма-аминомасляная кислота (ГАМК), а в спинном мозге — глицин. Нарушение естественного функционирования любого из нейромедиаторов этой троицы или его рецептора в результате приема лекарств или воздействия токсина приводит к возникновению множества проблем. Какое из двух зол меньше
В 1974-м и в 1997 г. по Эфиопии прокатились волны голода. Западный мир с содроганием смотрел на происходившее там — прямые телетрансляции с истощенными детьми и взрослыми на первом плане были ужасными. Программы продовольственной помощи стали появляться как грибы после дождя.
На экранах телевизоров, однако, не было видно другой трагедии. Многие из голодающих не могли встать не от истощения, а в результате отравления ядом, содержавшемся в единственно доступной для них пище. Местный врач Хайлейсус Гетахун, побывавший в отдаленных высокогорных районах на севере Эфиопии, рассказывал, как в одной семье из шести человек «его попытались приветствовать традиционным поклоном, но никто так и не смог встать. На ногах держалась лишь одна девочка». Ее мать обвязывала себя веревкой, свисающей со стены хижины, чтобы не упасть, когда она дробила зерно, а семья полностью зависела от помощи родственников и соседей. Это были жертвы эпидемии латиризма — постепенного паралича мышц, вызванного употреблением в пищу горошка, чины посевной, Lathyrus sativus.
Чину выращивают в Южной Азии и в Эфиопии уже более 2500 лет. Эта культура очень распространена по той простой причине, что ее дешево и легко выращивать, она устойчива к засухам, наводнениям, нашествиям насекомых и дает хорошие урожаи высокопитательного зерна. Зачастую только она переживает сильную засуху. Ну чем не идеальная культура для районов, где нередок голод, если бы не одно но. В этом растении высокий уровень сильнодействующего нейротоксина с труднопроизносимым названием бета-N-оксалиламино-L-аланин (обычно его обозначают аббревиатурой BOAA). BOAA специфически поражает двигательные нервы, которые управляют движением мышц. Его действие аналогично действию глутамата, т. е. он является «возбуждающим» — ядом, который возбуждает нервные клетки настолько, что они погибают.
BOAA присоединяется к глутаматным рецепторам на клетках двигательных нервов мозга. Эти рецепторы представляют собой ионные каналы, и присоединение к ним глутамата открывает пору, позволяя ионам кальция поступать в клетку. Поскольку избыток кальция губителен для нервных клеток, постоянное возбуждающее действие BOAA на глутаматные рецепторы приводит в конечном итоге к гибели клеток. Как следствие, у тех, кто ест чину в течение длительного времени, развивается периферический паралич ног. Больные могут лишь ползать, и улучшения практически не происходит даже после прекращения употребления чины в пищу.
Латиризм — старейшее неврологическое заболевание, известное людям. Еще в 400 г. до н. э. прославленный индийский врачеватель Чарак признавал, что оно связано с чрезмерным употреблением в пищу чины, а примерно столетием позже Гиппократ писал, что в Эносе «все мужчины и женщины, которые постоянно едят горошек, теряют силу ног». Первый отчет, прямо указывавший на связь между латиризмом и употреблением чины в пищу, был опубликован в 1844 г. генерал-майором Уильямом Слиманом в его книге «Мысли и воспоминания служаки из Индии» (Rambles and Recollections of an Indian Official). Там он описывал вспышку латиризма, поражавшего и скот, и людей, в районе Саугор в центральной части Индии.
Несмотря на все наши знания, трагедии не прекращаются. Во время Второй мировой войны ежедневный рацион заключенных немецкого концентрационного лагеря в Вапнярке недалеко от границы Украины состоял из чины и хлеба. За три месяца у 60 % заключенных развился латиризм. Причину заболевания в конечном итоге установил один из них, который сам стал жертвой этой болезни, и проблему решили, удалив чину из рациона. Этот случай заставил признать, что чина, если она составляет основную часть диеты более трех-четырех месяцев, неизбежно приводит к параличу.
К сожалению, в определенных обстоятельствах людям приходится выбирать между голодом и латиризмом. В 1997 г. чина была единственной культурой, которая выжила после сильнейшей засухи в Эфиопии, и по этой причине употреблялась в пищу в самых разных формах. Хотя это растение признано опасным, точная природа проблемы и подходы к предотвращению ее проявления изучены очень плохо. Медицинские работники находятся в растерянности и советуют избегать контакта с паром и сливаемой водой при приготовлении блюд из чины — это очень распространенное заблуждение, от которого мало толку. Информационные листовки отсутствуют, а многие поселения находятся в таких отдаленных местах, что добраться до них можно только на мулах или пешком. Эпидемия продолжалась два года до тех пор, пока потребление чины не сократилось. Хорошенького понемногу
Латиризм — не единственное заболевание, вызываемое гиперстимулированием глутаматных рецепторов. Ранним летним утром в 1961 г. прибрежный городок Капитола в Калифорнии накрыла огромная стая серых буревестников. Сотни птиц осаждали город, врезались в дома, пикировали на людей, падали замертво с небес и бродили пошатываясь, отрыгивая рыбу. Проснувшись в тот день, люди обнаружили, что улицы усыпаны мертвыми морскими птицами. Это событие настолько заинтриговало Альфреда Хичкока, что он внес изменение в сценарий экранизации небольшого рассказа Дафны дю Морье «Птицы» и даже упомянул в фильме нашествие на Капитолу. Изучение похожих случаев, которые произошли впоследствии, показало, что они были результатом действия домоевой кислоты — яда, вырабатываемого фитопланктоном и накапливающегося в высоких концентрациях существами в последующих звеньях пищевой цепочки. В организм буревестников яд попал из кильки, которой они питались.
Моллюски и ракообразные тоже накапливают домоевую кислоту. Это привело, в частности, к массовому отравлению людей в Канаде в 1987 г. Пострадали более 200 человек, которые ели голубых мидий. Помимо рвоты и диареи у многих пострадавших наблюдались нарушение ориентации в пространстве, потеря памяти, конвульсии и потеря сознания, примерно четверть из них потеряли кратковременную память, причем некоторые необратимо. Вскрытие и исследование мозга четырех скончавшихся показали, что у них были разрушены гиппокампальные нейроны (которые играют важную роль при запоминании). Домоевая кислота убивает нейроны, очень прочно присоединяясь к глутаматным рецепторам каинатного типа и открывая их. В результате приток ионов кальция убивает нервные клетки.
Сложные соединения, активирующие глутаматные рецепторы, вырабатывает и целый ряд грибов. Именно по этой причине их употребление в пищу вызывает головокружение, бред, галлюцинации и эйфорию. Натриевая соль глутаминовой кислоты (глутамат натрия) является усилителем вкуса, который добавляют во многие блюда, нередко под таким названием, как «гидролизованный растительный белок». Глутамат натрия получил дурную славу в средствах массовой информации, поскольку он якобы вызывает тошноту, головокружение и сильную головную боль, т. е. так называемый «синдром китайского ресторана». Наш мозг защищен от воздействия глутамата натрия гематоэнцефалическим барьером, однако некоторые нервные клетки находятся за его пределами. У молодых мышей эти клетки не имеют защиты от токсического действия высокой концентрации глутамата натрия, и если мыши едят его слишком много, то у них развивается ожирение, поскольку нейроны, регулирующие вес, разрушаются. Многочисленные исследования безопасности, однако, показывают, что глутамат натрия не оказывает вредного воздействия на организм человека даже при концентрациях значительно более высоких, чем в пищевых добавках. А испытание методом «двойного слепого исследования» не позволило надежно продемонстрировать, что глутамат натрия вызывает синдром китайского ресторана. Так или иначе, от этого глутамат натрия не потерял центральную роль в «суповых войнах». Битва развернулась, когда Campbell Soup Company запустила рекламу, в которой утверждалось, что ее супы приготовлены исключительно из натуральных продуктов, а вкус конкурирующих супов Progresso усиливается с помощью глутамата натрия. Компания General Mills Company, выпускавшая супы Progresso, в ответ заявила, что это супы Campbell содержат глутамат натрия, а во многих ее супах глутамата натрия как раз нет. А еще она заявила, что прекращает добавлять глутамат натрия во всю свою продукцию, и предложила Campbell последовать ее примеру. Ну и так далее. Столбенеющие от испуга
Всем известно, что от неожиданного звука человек может буквально подскочить на месте. Однако представьте, что его мышцы при испуге деревенеют и он сваливается со стула или падает плашмя, как клоун в цирке. Такое может случаться с людьми, страдающими болезнью испуга или стартл-болезнью. Поскольку их руки сильно прижимаются к бокам, они не могут ухватиться за что-нибудь, когда падают, и могут получить многочисленные травмы. У грудных детей с таким заболеванием реакция бывает настолько сильной, что их позвоночник выгибается назад, а дыхательные мышцы деревенеют, и они задыхаются и умирают. Такую патологию называют синдромом мышечной скованности младенцев.
Симптомы этой странной болезни сходны с симптомами отравления стрихнином, что дает ключ к разгадке ее причины. Обычно это нарушение функционирования глициновых рецепторов либо в результате мутации, как при стартл-болезни, либо в результате ингибирования стрихнином. Глицин — один из основных нейромедиаторов в тормозящих синапсах спинного мозга и ствола головного мозга. Он выделяется тормозящими нервными клетками и взаимодействует с глициновыми рецепторами в мембране постсинаптических нервных клеток, открывая их проницаемый для хлорид-ионов канал. Это приводит к подавлению электрической активности целевой клетки и делает ее невосприимчивой к возбуждающим сигналам. Такое ингибирование принципиально необходимо для нормального функционирования организма. Мышцы, приводящие в движение наши конечности, являются парными — одна сгибает конечность, а другая разгибает ее. Крайне важно, чтобы одна мышца расслаблялась, когда другая стимулируется, иначе конечность не сможет двигаться. У людей, страдающих стартл-болезнью, отсутствует реакция на выброс глицина из тормозящих нервов, поэтому их парные мышцы не расслабляются. Поскольку обе мышцы сокращаются одновременно, они деревенеют при испуге.
Хотя эта болезнь и похожа на патологию миотонических коз из штата Теннесси, о которой мы говорили раньше (в обоих случаях наблюдается одеревенение мышц), причины недуга совершенно разные. Стартл-болезнь — это проблема центральной нервной системы, которая перестает передавать мышцам необходимые сигналы. Сами мышцы функционируют нормально. В отличие от этого у миотонических коз с нервной системой все в порядке, а источник проблемы кроется в мышцах. «Загадочное происшествие в Стайлзе»
Однажды ночью миссис Эмили Кавендиш, богатая вдова, была обнаружена умирающей в своем имении Стайлз-Корт в Эссексе. Как выяснилось позднее, ее отравили стрихнином. В повести Агаты Кристи знаменитый детектив Эркюль Пуаро распутывает сложнейшее переплетение событий и доказывает, что в преступлении виноваты новый муж Эмили и его любовница. Стрихнин фигурирует во многих известных случаях отравления, как реальных, так и литературных. «Отравитель из Ламбета», серийный убийца д-р Томас Нил Крим, приглашал проституток выпить с ним, добавлял в их порцию спиртного стрихнин и оставлял умирать в муках. Поскольку стрихнин — одно из самых горьких веществ на свете, выпивку нужно было подсластить, чтобы замаскировать его вкус, или девушки должны были находиться в сильном подпитии, чтобы не заметить горечь. Стрихнин раньше использовали как крысиный яд.
Отравление стрихнином напоминает стартл-болезнь потому, что это вещество блокирует глициновые рецепторы и полностью прекращает их работу. Этот токсин впервые выделили из бобов игнации горькой, Strychnos ignatia, названной так в честь Игнатия Лойолы, основателя ордена иезуитов. Он также содержится в семенах дерева, известного как рвотный орех (Strychnos nux-vomica). Любопытно, что стрихнин одно время применяли в качестве возбуждающего средства, естественно, в значительно меньших дозах, чем те, что вызывают острое отравление. Понятно, что иногда случались передозировки. Один студент-медик описал в 1896 г., как он взбадривал себя стрихнином во время подготовки к экзамену. В один прекрасный момент его икроножные мышцы начали деревенеть и судорожно сокращаться, пальцы ног выгнулись вверх, в глазах начали мелькать яркие точки, он упал и покрылся холодным потом. По его словам, «он понимал, что с ним происходит что-то серьезное», и поэтому кое-как добрался до своего медицинского саквояжа и принял хлорат калия (обезболивающее средство). После этого он потерял сознание и погрузился в глубокий сон. Проснулся он «на следующее утро без каких-либо неприятных симптомов», но с огромным желанием двигаться. Надо думать, что желания повторить эксперимент у него больше не было. Мозговой шторм
Прекращение торможения в определенных мозговых структурах может провоцировать приступы эпилепсии, неожиданные нескоординированные всплески электрической активности, напоминающие электрический шторм в мозге. Федор Достоевский был, пожалуй, самым известным эпилептиком в истории. В его записной книжке имеются записи о 102 приступах, а пережитое во время обострений нашло отражение в романах. Припадки, или приступы, индивидуальны у каждого человека, поскольку у эпилепсии множество разновидностей и масса причин, однако в целом их можно разделить на две большие группы. При малых эпилептических припадках больной теряет сознание на несколько секунд, смотрит в пространство с отсутствующим видом и, по всей видимости, отключается от окружающего мира. Более серьезны судорожные припадки, во время которых конечности больного конвульсивно дергаются и совершают неконтролируемые движения из-за того, что электрический шторм затрагивает нервные клетки, управляющие их мышцами. У одних людей конвульсии имеют выраженную локализацию и затрагивают только небольшую группу мышц, а у других могут наблюдаться большие эпилептические припадки с судорогами всего тела и нередко с потерей сознания.
Эпилепсия известна людям с древних времен. Гиппократ называл ее «священной болезнью» и совершенно правильно утверждал, что ее причиной является нарушение работы мозга. Тем не менее на протяжении многих веков представление об эпилепсии как о болезни соседствовало с идеей о том, что эпилептики — это проклятые богами или одержимые нечистой силой. Эпилептиков изгоняли из общества, а в XVI в. стали обвинять еще и в колдовстве. Постепенно было признано, что эпилепсия — это болезнь, однако негативная аура вокруг нее все же осталась. Когда у принца Джона, младшего сына короля Георга V, обнаружилась эпилепсия, его спрятали подальше от глаз в одном из коттеджей сандрихемской резиденции. К счастью, в наши дни эта болезнь уже не ассоциируется с клеймом позора.
Происхождение эпилепсии до сих пор не совсем понятно. В одних случаях это следствие черепно-мозговой травмы, давления опухоли на мозг или родовой травмы мозга. В других она наследуется и возникает в результате мутации определенных генов, многие из которых представляют собой ионные каналы. Чаще всего такие мутации подавляют электрическую активность тормозящих нервных клеток, которые в нормальном состоянии сдерживают активность мозга. Отпустите тормоз, и мозг пойдет вразнос из-за чрезмерного стимулирования возбуждающих цепей.
Поначалу средства против эпилепсии были, мягко говоря, экстравагантными — от совета Плиния пить кровь гладиаторов до рекомендации Роберта Бойля принимать внутрь толченые ягоды омелы «в количестве, умещающемся на шестипенсовой монете» во время полнолуния. Прорыв произошел, когда в конце XIX в. обнаружилось, что удаление триггерной области мозга может давать положительный эффект. Однако хирургическое вмешательство не всегда возможно, да к тому же при удалении эпилептического очага очень легко повредить другие части мозга. Современные методы лечения нередко заключаются в приеме лекарств, уменьшающих частоту и интенсивность припадков. По большей части такие лекарства усиливают выделение или действие тормозящего нейромедиатора ГАМК, который снимает избыточную электрическую активность, удерживая мембранный потенциал нервных клеток на более отрицательном уровне. Существуют и средства, которые непосредственно подавляют активность возбуждающих нейронов, воздействуя на их натриевые и калиевые каналы. Вместе с тем, поскольку эпилептические припадки могут повреждать мозг, такое лечение не очень эффективно, если его не начать на ранней стадии развития заболевания.
У некоторых детей встречается неустранимая эпилепсия, которая не поддается медикаментозному лечению и затрагивает части мозга, недоступные для хирургического вмешательства. Одним из старых средств, которое оказывается удивительно эффективным в этих случаях, является строгое ограничение потребления углеводов. Его называют кетогенной диетой, поскольку она приводит к повышению концентрации таких промежуточных продуктов метаболизма в крови, как кетоновые тела. Это почти устраняет припадки примерно у трети больных и еще у одной трети уменьшает их частоту. Почему этот метод работает, так и остается неясным, но это мало волнует больных детей и их родителей. Вместе с тем выдержать такую диету непросто, ведь даже одна шоколадка или другое сладкое лакомство способно спровоцировать припадок. Наш мозг
В этой главе мы разобрали, как устроен головной мозг, как через его сложнейшую структуру проходят каскады электрических импульсов и «химических поцелуев», позволяющие нам двигаться и воспринимать происходящее вокруг. Однако у мозга есть еще более важная и удивительная функция. Он определяет наши эмоции, мысли, личность, самосознание — в общем, чувство собственного «Я».
Назад: Глава 9 Врата чувств
Дальше: Глава 11 Что есть разум