Книга: Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Назад: 22 Южная Америка выигрывает сражение
Дальше: 24 Смирение

23
Ядерная физика? Вы шутите!

Скептики отметят, что все рассказанное мной о свойствах черных дыр — от энтропии, температуры и хокинговского излучения до дополнительности черных дыр и голографического принципа — это чистая теория без единого грана подтверждающих ее экспериментальных данных. Увы, скептики еще очень долго могут оставаться правы.
Но тут надо сказать, что совершенно неожиданная взаимосвязь между черными дырами, квантовой гравитацией, голографическим принципом, с одной стороны, и экспериментальной ядерной физикой — с другой, может раз и навсегда опровергнуть утверждение о том, что эти теории лежат за рамками возможного научного подтверждения. На первый взгляд ядерная физика кажется совершенно бесперспективным местом для проверки таких идей, как голографический принцип и дополнительность черных дыр. Ядерная физика давно не находится на переднем краю исследований. Большинство физиков, и я в их числе, полагали, что эта старая область науки исчерпала свой потенциал и уже не сможет научить нас чему-то новому относительно фундаментальных законов природы. С точки зрения современной физики ядра — это что-то вроде зефира: большие рыхлые шары, по большей части пустые внутри. Что они могут нам сказать о физике планковского масштаба? Совершенно неожиданно оказалось, что довольно много.
Струнные теоретики всегда интересовались ядрами. Вся предыстория теории струн была связана с адронами: протонами, нейтронами, мезонами и глюболами. Подобно ядрам, эти частицы большие, рыхлые и состоят из кварков и глюонов. Похоже, что на масштабе, в сто миллиардов миллиардов раз крупнее планковского, природа повторяет саму себя. Математика адронной физики оказалась почти такой же, как математика теории струн. Это кажется совершенно удивительным, если принять во внимание огромную разницу в масштабах: нуклоны могут быть в 1020 раз больше фундаментальных струн и колеблются в 1020 раз медленнее. Как могут эти теории быть одинаковыми или даже отдаленно похожими? Тем не менее в определенном смысле это именно так. И если обычные субатомные частицы в самом деле похожи на фундаментальные струны, почему бы нам не проверять идеи теории струн в ядерных лабораториях? В действительности это уже делается почти сорок лет.
Связь между адронами и струнами — это одна из основ современной физики элементарных частиц, но до самого недавнего времени было невозможно проэкспериментировать с ядерным аналогом физики черных дыр. Сейчас ситуация меняется.
За пределами Лонг-Айленда, примерно в сотне километров от Манхэттена, ядерные физики Брукхевенской национальной лаборатории сталкивают тяжелые атомные ядра и смотрят, что получится в результате. Релятивистский коллайдер тяжелых ионов RHIC разгоняет ядра золота почти до скорости света, так что при столкновении они дают колоссальный выплеск энергии с температурой в сотни миллионов раз выше, чем на поверхности Солнца. Брукхевенские физики не интересуются ядерным оружием или какими-то еще ядерными технологиями. Их мотив — чистое любопытство, изучение свойств новой формы материи. Как ведет себя это горячее ядерное вещество? Является ли оно газом? Жидкостью? Остается ли оно в связанном состоянии или немедленно испаряется, распадаясь на отдельные частицы? Вылетают ли оттуда струи чрезвычайно энергичных частиц?
Как я уже сказал, ядерная физика и квантовая гравитация действуют в совершенно несопоставимых масштабах, но какая же тогда между ними может быть взаимосвязь? Лучшая известная мне аналогия связана с одним из худших фильмов, старым ужастиком эпохи драйв-ин кинотеатров. В центре сюжета были мухи-монстры. Я не знаю, как делался этот фильм, но предполагаю, что снималась обычная домашняя муха, которую потом увеличивали так, чтобы она занимала весь экран. Изображение воспроизводилось в замедленном показе, из-за чего муха воспринималась как отвратительная огромная птица. Результат был ужасен, но если вернуться к нашей теме, то это почти идеальная иллюстрация связи между гравитонами и глюболами. И те и другие — замкнутые струны, но гравитон гораздо меньше и быстрее глюбола — примерно в 1020 раз меньше и быстрее. Кажется, адроны очень похожи на образы фундаментальных струн, только раздутые и замедленные, — не в сотни раз, как мухи, а в фантастические 1020 раз.
Так что если мы не можем для порождения черных дыр сталкивать с колоссальной энергией частицы планковского размера, то, возможно, у нас получится сталкивать их раздутые версии — глюболы, мезоны или нуклоны, — так чтобы создать увеличенную версию черной дыры. Но погодите, не потребуется ли для этого громадное количество энергии? Нет, не потребуется, а чтобы понять почему, надо вспомнить описанную в главе 16 контринтуитивную связь между размером и массой: маленькое — тяжелое, большое — легкое. Тот факт, что явления ядерной физики протекают в несопоставимо больших масштабах, чем те, что характерны для теории фундаментальных струн, означает, что эти явления нуждаются в гораздо менее концентрированной энергии, занимающей гораздо больший объем. Если подставить числа и выполнить расчеты, то нечто, очень похожее на раздутую и заторможенную черную дыру, должно, оказывается, возникать при обычном столкновении ядер на RHID.
Чтобы понять, в каком смысле можно говорить о создании черных дыр на RHID, нам надо вернуться к голографическому принципу и открытию Хуана Малдасены. Совершенно неожиданным для всех способом Малдасена обнаружил, что две разные математические теории в действительности были одной и той же, то есть они оказались «дуальны друг другу», если пользоваться теорструнным жаргоном. Одна из теорий была собственно теорией струн с гравитонами и черными дырами, но только в (4 +1) — мерном антидеситтеровском пространстве (АДС). (В той главе для простоты иллюстрирования я позволил себе вольность и уменьшил число пространственных измерений. В этой главе я восстанавливаю недостающие измерения.)
Четырех пространственных измерений для ядерной физики многовато, но вспомните голографический принцип: все, что происходит в АДС, должно полностью описываться математической теорией с пространственной размерностью на единицу меньше. Поскольку Малдасена начал с четырех пространственных измерений, дуальная голографическая теория имеет только три измерения — столько же, сколько и наше обычное пространство. Может ли это голографическое описание быть похожим на теории, которые мы используем в обычной физике?
Ответ оказывается утвердительным: голографическое дуальное описание математически очень похоже на квантовую хромодинамику (КХД) — теорию кварков, глюонов, адронов и ядер.
Квантовая гравитация в АДС ↔ КХД
Для меня самым интересным в работе Малдасены было то, каким образом она подтвердила голографический принцип, пролив свет на работу квантовой гравитации. Но Малдасена и Виттен увидели другую возможность. Их догадка, надо сказать — совершенно блестящая, состояла в том, что голографический принцип — это улица с двусторонним движением. Почему бы не применить его в обратном направлении? То есть использовать наши знания о гравитации — в данном случае о гравитации в (4 + 1) — мерном АДС-пространстве, — чтобы узнать нечто новое о привычной квантовой теории поля. Для меня это был совершенно неожиданный поворот, бонус к голографическому принципу, о котором я никогда не задумывался.
Для выполнения этой программы не понадобилось больших усилий. КХД — не совсем то же самое, что теория Малдасены, но главное отличие легко можно устранить нехитрой модификацией АДС. Давайте взглянем на АДС, как оно выглядит из точки, находящейся очень близко к границе (где последний видимый демон сжимается до нулевых размеров). Я называю эту границу УФ-браной. «УФ» здесь означает ультрафиолет — тот же термин, который применяется для очень коротковолнового света. (С годами термин «ультрафиолет» стал применяться для любых явлений, происходящих в малых масштабах. В данном контексте это слово отсылает к тому факту, что ангелы и демоны вблизи границы эшеровского рисунка сжимаются до бесконечно малых размеров.) Слово «брана» в термине «УФ-брана» — это на самом деле терминологическая ошибка, но поскольку такое словоупотребление устоялось, я буду его придерживаться. УФ-брана — это поверхность, близкая к границе.
Представьте себе движение от УФ-браны внутрь, туда, где квадратные демоны расширяются, а часы безгранично замедляются. Маленькие и быстрые объекты, находящиеся вблизи УФ-браны, становятся большими и медленными по мере погружения в глубь АДС. Но АДС не совсем подходит для описания КХД. Модифицированное пространство заслуживает собственного названия, хотя его отличие и невелико; назовем его Q-пространством. Как и АДС, Q-пространство имеет УФ-брану, у которой все предметы сжимаются и ускоряются, но, в отличие от АДС, здесь есть вторая граница, называемая ИК-браной. («ИК» означает «инфракрасный», это термин, используемый для очень длинноволнового света.) ИК-брана — это вторая граница, своего рода непроницаемый барьер, где ангелы и демоны достигают максимального размера. Если УФ-брана — это потолок над бездонным ущельем, то Q-пространство — это обычная комната с потолком и полом. Если пренебречь временным измерением и нарисовать только два пространственных, то АДС и Q-пространство можно изобразить так:
Представьте себе струноподобную частицу, помещенную в Q-пространство вблизи УФ-браны. Подобно окружающим ее ангелам и демонам, она станет выглядеть очень маленькой, возможно, планковского размера, и очень быстро колеблющейся. Но, если ту же частицу переместить к ИК-бране, будет казаться, что она выросла, как если бы ее спроецировали на удаляющийся экран. Теперь обратим внимание на колебания струны. Они служат своего рода часами и, как всякие часы, идут быстрее, когда находятся вблизи УФ-браны, и замедляются по мере движения к ИК-бране. Струна возле ИК-края пространства не только станет выглядеть огромной запутанной версией самой себя ультрафиолетовой, но она также будет крайне медленно колебаться. Это различие очень похоже на разницу между реальной мухой и ее киношным образом или между фундаментальными струнами и их ядерными двойниками.
Если крайне малые, планковского размера, частицы теории струн «живут» вблизи УФ-браны, а их раздутые версии — адроны — вблизи ИК-браны, насколько же они отстоят друг от друга? В определенном смысле не так уж далеко; достаточно спуститься примерно на 66 рядов квадратных демонов, чтобы из области объектов планковского размера добраться до адронов. Но учтите, что каждый это то же самое, что расширение в 1020 раз.
Есть два взгляда на сходство между теорией фундаментальных струн и ядерной физикой. Согласно более консервативному взгляду, это случайное совпадение, примерно как сходство между атомами и Солнечной системой. Это подобие было полезно на заре атомной физики. Нильс Бор в своей теории использовал для атомов туже математику, которую Ньютон применял к Солнечной системе. Но ни Бор, ни кто-либо другой не считал, что Солнечная система действительно является раздутой версией атома. С этой консервативной точки зрения связь между квантовой гравитацией и ядерной физикой — тоже лишь математическая аналогия, полезная, однако, тем, что дает нам возможность использовать математику теории гравитации для объяснения некоторых явлений в ядерной физике.
Более воодушевляющая точка зрения состоит в том, что ядерные струны — это в действительности те же самые объекты, что и фундаментальные струны, но только наблюдаемые через искажающую линзу, которая растягивает их изображения и замедляет движения. Согласно этому взгляду, когда частица (или струна) находится вблизи УФ-браны, она кажется маленькой, энергичной и быстро колеблющейся. То есть она выглядит как фундаментальная струна, ведет себя как фундаментальная струна, а значит, это и есть фундаментальная струна. Например, замкнутая струна, расположенная на УФ-бране, — это гравитон. Но та же струна, переместившись на ИК-брану, смотрится и ведет себя как глюбол. С этой точки зрения, гравитоны и глюболы — это в точности одни и те же объекты, за исключением их положения на сэндвиче бран.
Представьте себе пару гравитонов (струн, находящихся вблизи УФ-браны), которые вот-вот столкнутся друг с другом.

 

Две частицы вблизи УФ-браны перед столкновением
Если к моменту встречи возле УФ-браны у них будет достаточно энергии, возникнет обычная черная дыра: комок энергии, прилепленный к УФ-бране. Воспринимайте его как каплю жидкости, висящую на потолке. Биты информации, составляющие ее горизонт, имеют планковский размер.

 

Вот это уж точно эксперимент, который мы вряд ли когда-нибудь сможем осуществить.
Но теперь заменим гравитоны двумя ядрами (вблизи ИК-браны) и столкнем их.

 

Два ядра вблизи ИК-браны перед столкновением
Вот тут-то и проявляется вся мощь дуальности. Можно рассматривать это явление в четырехмерной версии, в которой два объекта сталкиваются и образуют черную дыру. На этот раз черная дыра будет находиться вблизи ИК-браны, словно большая лужа на полу. Сколько энергии на это потребуется? Гораздо меньше, чем для формирования черной дыры вблизи УФ-браны. На самом деле эта энергия легко достижима на RHIC.
Но можно также рассматривать процесс с трехмерной точки зрения. В этом случае адроны или ядра сталкиваются и порождают брызги из кварков и глюонов.
Поначалу, пока никто не понимал потенциальной связи КХД с физикой черных дыр, эксперты по КХД ожидали, что энергия столкновения породит газ из частиц, которые быстро разлетятся без всякого сопротивления. Но увидели они нечто совершенно иное: энергия удерживалась в форме, напоминавшей каплю жидкости, — так называемый горячий кварковый суп. Этот суп не похож на другие жидкости; у его потоков есть совершенно удивительные свойства, очень напоминающие не что иное, как горизонт черной дыры.
Все жидкости обладают вязкостью. Это разновидность трения, действующего между слоями жидкости, когда они скользят друг по другу. Именно по вязкости различаются очень густые жидкости вроде меда и гораздо более текучие, такие как вода. Вязкость — это не просто качественное понятие. Для любой жидкости можно определить точное числовое значение так называемой сдвиговой вязкости.
Теоретики первоначально обратились к стандартному методу приближений и заключили, что горячий кварковый суп должен иметь очень высокую вязкость. Когда оказалось, что его вязкость поразительно мала, все были крайне удивлены — все, за исключением нескольких струнных теоретиков.
Если использовать количественные оценки, то вязкость горячего кваркового супа оказывается самой низкой среди всех известных жидкостей и гораздо ниже, чем у воды. Даже сверхтекучий жидкий гелий (прежний чемпион по этому параметру) является значительно более вязким.
Встречается ли хоть где-то в природе столь низкая вязкость, как у горячего кваркового супа? Да, но не у обычных жидкостей. Горизонт черной дыры, если его возмутить, ведет себя подобно жидкости. Например, если маленькая черная дыра падает в черную дыру большего размера, она на время создает выступ на горизонте, подобно капле меда, упавшей на ровную поверхность наполненной медом тарелки. Выступ, возникший на горизонте, растекается как раз так, как это происходило бы с жидкостью, имеющей вязкость. Физики уже давно подсчитали вязкость горизонта, и если сопоставить ее с обычными жидкостями, то она оказывается значительно ниже, чем у сверхтекучего гелия. Когда струнные теоретики начали догадываться о связи между черными дырами и столкновениями ядер, они поняли, что среди всего прочего горячий кварковый суп больше всего похож на горизонт черной дыры.
Что в итоге происходит с каплей жидкости? Как и черная дыра, она испаряется — превращается в разнообразные частицы, включая нуклоны, мезоны, фотоны, электроны и нейтрино. Вязкость и испарение — всего лишь два из ряда свойств, которые объединяют горизонты и горячий кварковый суп.
Ядерная жидкость сейчас активно исследуется, чтобы понять, связаны ли аналогичным образом другие ее свойства с физикой черных дыр. Вели данная тенденция сохранится, то перед нами откроется удивительное окно в мир квантовой гравитации, раздутый в размерах и замедленный по частоте так, что планковская длина становится ненамного меньше протона, благодаря чему появится замечательная возможность подтвердить теории Хокинга и Бекенштейна, а также дополнительность черных дыр и голографический принцип.
Говорят, что мир — это лишь краткая интерлюдия между войнами. Но в науке, как справедливо отметил Томас Кун, верно обратное: большая часть «нормальной науки» делается в долгие мирные однообразные периоды между переворотами. Битва при черной дыре грозила полной реструктуризацией физических законов, но теперь мы видим, что она прокладывает свой путь для нормальной каждодневной исследовательской работы в области физики. Как и многие прежние революционные идеи, голографический принцип эволюционировал от радикального сдвига парадигмы до повседневного рабочего инструмента, причем, что удивительно, физиков-ядерщиков.
Назад: 22 Южная Америка выигрывает сражение
Дальше: 24 Смирение