Математика допускает бесконечные произведения точно так же, как она допускает бесконечные суммы. Как и бесконечные суммы, некоторые из бесконечных произведений сходятся к определенному значению, а некоторые расходятся к бесконечности. Данное произведение сходится, когда s больше 1. Например, при s = 3 оно равно
Сомножители становятся все ближе и ближе к 1, причем делают это очень быстро, так что каждое следующее умножение — это умножение на нечто, лишь на самую малую малость отличающееся от 1, что, конечно, меняет результат очень незначительно. Прибавим к чему-нибудь нуль: никакого эффекта. Умножим что-нибудь на единицу: никакого эффекта. В бесконечной сумме члены должны достаточно быстро приближаться к нулю, чтобы прибавление их сказывалось мало; в бесконечном произведении они должны достаточно быстро приближаться к 1, чтобы умножение них сказывалось мало.