Книга: Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Назад: 17
Дальше: 19

18

Одно из великих математических открытий Античности, сделанное Пифагором или одним из его учеников около 600 г. до P.X., состояло в том, что не всякое число есть целое или дробь. Например, квадратный корень из 2, без сомнения, не является целым. Грубая арифметика показывает, что он лежит где-то между 1,4 (которое в квадрате дает 1,96) и 1,5 (которое в квадрате дает 2,25). Это, однако, и не дробь. Доказательство таково. Пусть S обозначает множество положительных целых чисел n, для которых выполнено такое свойство: n√2 — также положительное целое число. Если множество S не пусто, в нем есть наименьший элемент. (Любое непустое множество положительных целых чисел имеет наименьший элемент.) Обозначим этот наименьший элемент буквой k. Теперь образуем число u = (√2 − 1)k. Легко видеть, что (i) u меньше, чем k, (ii) u — положительное целое и (iii) u√2 — также положительное целое, так что (iv) u лежит в множестве S. Это противоречие, поскольку мы определили k как наименьший элемент из S, и, следовательно, предположение, из которого мы исходили, — что S не пусто — должно быть ложным. Следовательно, множество S пусто. Следовательно, нет положительного целого числа n, для которого n√2 — положительное целое число. Следовательно, √2 — не дробь. Число, которое не является ни целым, ни дробным, называется «иррациональным», поскольку оно не есть отношение (ratio) двух целых чисел.
Назад: 17
Дальше: 19