Середина века
(2030–2070 гг.)
Глобальное потепление
К середине века экономика, основанная на сжигании ископаемого топлива, вызовет закономерное и неизбежное следствие: глобальное потепление климата. Тот факт, что Земля постепенно нагревается, уже не вызывает сомнений. За последние сто лет температура на планете выросла в среднем на 0,7 С, и темп ее роста увеличивается. Признаки несомненны, куда ни посмотри.
• Всего за 50 последних лет толщина арктических льдов уменьшилась, как ни поразительно, вдвое. Дело в том, что большая часть арктических льдов просто плавает в воде и имеет температуру чуть ниже точки замерзания. Следовательно, льды чрезвычайно чувствительны к небольшим температурным изменениям в океане; их можно, как канарейку в шахте, использовать как индикатор таких изменений. Сегодня значительная часть северной ледяной шапки исчезает в летние месяцы, а уже летом 2015 г. лед в Арктике может растаять практически полностью. К концу XXI в. полярная ледяная шапка может вообще исчезнуть, нарушив тем самым теплообмен в океане и систему воздушных течений вокруг планеты, а также, соответственно, установившиеся погодные нормы.
• Гренландские шельфовые ледники только за 2007 г. уменьшились на 60 км2, а в 2008 г. этот показатель составил уже 185 км2. (Если весь лед Гренландии по каким-то причинам растает, уровень океана во всем мире поднимется примерно на 6 м.)
• От антарктического ледяного панциря, десятки тысяч лет сохранявшего стабильность, постепенно отламываются большие куски. Так, в 2000 г. откололся кусок льда размером со штат Коннектикут площадью около 11 000 км2. В 2002 г. от ледника Туэйтса откололся кусок размером с Род-Айленд. (Если антарктические льды растают, уровень Мирового океана поднимется примерно на 60 м.)
• На каждый метр подъема уровня Мирового океана приходится в среднем 100 м отступления береговой линии. За последние сто лет уровень уже поднялся на 20 см, в основном в результате теплового расширения воды. По данным ООН, уровень морей к 2100 г. может подняться еще на 20–60 см. Некоторые специалисты, правда, считают, что ООН слишком осторожничает в оценке имеющихся данных. Ученые из Института арктических и альпийских исследований Университета Колорадо утверждают, что к 2100 г. уровень моря может подняться на 1–2 м. Так что постепенно карта береговых линий Земли будет меняться.
• Достоверные данные о температурах начали регистрироваться в конце XVIII в. При этом 1995, 2005 и 2010 гг. фигурируют среди самых жарких в истории наблюдений, а десять лет — с 2000-го по 2009-й — стали самым жарким десятилетием за все это время. Заметно растет и содержание двуокиси углерода в воздухе. Нынешний ее уровень — самый высокий за последние 100 000 лет.
• По мере прогревания земного шара тропические болезни начинают постепенно мигрировать на север. Недавняя вспышка лихорадки Западного Нила, переносимой комарами, может оказаться предвестницей грядущих бедствий. ООН особенно обеспокоена продвижением на север малярии. Обычно яйца множества вредных насекомых гибнут каждую зиму при промерзании почвы. Но зимы становятся короче, и опасные насекомые, скорее всего, тоже начнут неостановимое наступление на север.
Двуокись углерода — парниковый газ
Согласно Межправительственной комиссии ООН по изменению климата, ученые пришли к выводу о том, что с 90%-ной вероятностью изменение климата вызвано деятельностью человека, в особенности выпуском в атмосферу углекислого газа при сжигании нефти и угля. Солнечный свет легко проходит сквозь углекислый газ и нагревает землю, а вот возникшее при этом инфракрасное излучение уже не может так легко пройти обратно сквозь слой углекислого газа. Энергия солнечного света, попавшая на Землю, оказывается в ловушке и не может уйти обратно в космос.
Нечто подобное можно наблюдать в парнике или в салоне автомобиля. Солнечный свет нагревает воздух внутри, а стекло не дает нагретому воздуху выйти наружу.
Ситуация угрожающая. Количество выделяемого углекислого газа резко выросло, особенно за последние сто лет. До Промышленной революции содержание углекислого газа в воздухе составляло 270 частей на миллион, или 0,0270%; сегодня оно подскочило до 387 частей на миллион, или 0,0387%. (В 1900 г. в мире потреблялось 150 млн баррелей нефти. В 2000 г. потребление достигло 28 млрд баррелей, т.е. увеличилось в 185 раз. В 2008 г. в воздух было выпущено 9,4 млрд т углекислого газа от сжигания ископаемого топлива, но лишь 5 млрд т было переработано в океанах, почве и растительности. Остальное так и останется в воздухе на ближайшие десятилетия, нагревая Землю.)
Визит в Исландию
Подъем температуры — не газетная утка, в этом можно без труда убедиться, изучив ледяные керны. Ученые пробурили в древних льдах Арктики немало скважин и сумели извлечь из них пузырьки воздуха возрастом в несколько тысяч лет. Химический анализ воздуха из этих пузырьков позволил ученым реконструировать температурный режим и содержание углекислого газа в атмосфере более чем на 600 000 лет назад. Очень скоро мы сможем узнать, какие погодные условия преобладали на Земле миллион лет назад.
Я видел все это своими глазами. Однажды мне довелось прочесть лекцию в Рейкьявике, столице Исландии, и посетить Исландский университет, где, собственно, и исследуются ледяные керны. Когда самолет приземляется в Рейкьявике, поначалу вы не видите вокруг ничего, кроме снега и дикого камня; если бы не снег, пейзаж очень напоминал бы лунный. Тем не менее бесплодная и неприветливая земля Арктики представляет собой идеальное место для исследования климата Земли на сотни тысяч лет назад.
При посещении лаборатории, температура в которой всегда поддерживается ниже точки замерзания, мне пришлось пройти через тяжелые теплоизолирующие двери. Внутри я увидел бесконечные стеллажи с длинными металлическими трубками длиной около 3 м и диаметром около 4 см. В каждой из таких трубок содержится образец льда, извлеченный из скважины при бурении, который был снегом, выпавшим в этих краях тысячи лет назад. Если снять металлические трубки, то каждый такой образец можно тщательно рассмотреть и исследовать. Правда, лично я с первого взгляда увидел только длинную тонкую колонку белого льда. Но затем, при ближайшем рассмотрении, я заметил, что лед на самом деле полосат и состоит из тонких разноцветных слоев.
Чтобы точно датировать ледяные образцы, ученые используют самые разные методы. В некоторых слоях содержатся маркеры, отмечающие различные важные события, к примеру выпадение сажи после извержения вулкана. Даты крупных извержений известны достаточно точно, так что слои-маркеры могут служить опорными точками при датировании остальной части керна.
Из ледяных кернов затем делаются тонкие срезы, которые можно подробно исследовать. Посмотрев на один такой срез под микроскопом, я увидел крошечные, поистине микроскопические пузырьки. По спине пробежал холодок, когда я понял, что вижу воздушные пузырьки, запертые в ледяной массе десятки тысяч лет назад, еще до возникновения человеческой цивилизации.
Содержание углекислого газа внутри каждого пузырька измерить несложно, гораздо сложнее определить температуру воздуха в момент залегания льда. (Для этого ученые анализируют воду в пузырьке. Молекулы воды могут содержать разные изотопы водорода. Когда температура падает, вода с более тяжелыми изотопами конденсируется быстрее, чем обычная. Следовательно, измерив содержание в воде молекул с тяжелыми изотопами, можно определить, при какой температуре сконденсировалась эта вода.)
Наконец, тщательно проанализировав состав тысяч ледяных кернов, ученые смогли сделать несколько существенных выводов. Они выяснили, что температура и содержание углекислого газа на протяжении многих тысяч лет изменялись параллельно и даже синхронно. Когда росла одна из этих величин, росла и другая.
Самое важное то, что удалось зафиксировать резкий скачок температуры и содержания углекислого газа за последние сто лет. Это очень необычно, так как в большинстве своем уровни менялись постепенно, на протяжении тысяч лет. Ученые утверждают, что этот необычный пик не является частью естественного процесса потепления, а прямо указывает на вмешательство человека.
Существуют и другие способы показать, что внезапный резкий рост вызван именно деятельностью человека, а не проявлением естественных циклов. Компьютерное моделирование на сегодняшний день так развито, что мы вполне можем посчитать температурную динамику Земли с учетом деятельности человека и без нее. По результатам такого моделирования получается, что без цивилизации и искусственного производства углекислого газа температурная кривая была бы относительно плоской. Но стоит добавить человеческий фактор, и можно показать, что возникает резкий скачок и температуры, и содержания двуокиси углерода. При этом предсказанный пик в точности совпадает с реальным наблюдаемым пиком.
Наконец, количество солнечной энергии, падающее на каждый квадратный метр земной поверхности, можно измерить непосредственно. Можно также подсчитать количество тепла, отраженного Землей в открытый космос. В нормальных условиях эти две величины должны совпадать, так чтобы количество попадающего на планету тепла равнялось количеству тепла уходящего. Но в реальности мы обнаруживаем, что эти величины не равны, и разница между ними в настоящее время нагревает Землю. Затем, если мы вычислим количество энергии, производимое человеком, получим точное соответствие. Следовательно, именно деятельность человека вызывает нагрев Земли и глобальное потепление климата.
К сожалению, даже если бы сегодня человечество полностью прекратило производство углекислого газа, уже имеющихся в атмосфере запасов было бы достаточно, чтобы глобальное потепление продолжалось еще несколько десятков лет.
В результате к середине века положение может достичь критической точки.
Ученые предсказывают, что если подъем уровня Мирового океана продолжится, то к середине века или немного позже многие прибрежные города исчезнут с лица земли. Значительную часть Манхэттена придется эвакуировать, а Уолл-стрит полностью окажется под водой. Правительствам придется решать, за какие из крупных прибрежных городов стоит бороться, а какие просто обречены. Некоторые города, возможно, удастся спасти при помощи сложной системы дамб и шлюзов. Другие придется бросить, что вызовет массовую миграцию людей. А поскольку большинство деловых центров и самых населенных городов мира располагаются на океанском побережье, последствия для мировой экономики могут быть катастрофическими.
Но даже если некоторые города удастся спасти, любой сильный шторм будет угрожать им наводнением, а даже сравнительно небольшое количество воды может полностью парализовать инфраструктуру крупного города. К примеру, в 1992 г. в результате сильнейшего шторма был почти полностью затоплен Манхэттен, парализована система метро и железная дорога на Нью-Джерси. А экономика без транспортной системы бессильна.
Бангладеш и Вьетнам будут затоплены
В докладе Межправительственной комиссии по изменению климата названы три горячие точки, три места потенциальных катастроф. Это Бангладеш, дельта Меконга во Вьетнаме и дельта Нила в Египте.
Хуже всего ситуация в Бангладеш — стране, которую регулярно заливает во время штормов без всякого глобального потепления. Территория этого государства в основном представляет собой плоскую равнину, лежащую практически на уровне моря. Несмотря на значительные успехи последних лет, это по-прежнему одна из беднейших стран мира, при этом плотность населения там одна из самых высоких. (Ее население насчитывает 161 млн человек, что сравнимо с населением России, при этом по площади Бангладеш меньше России в 120 раз.) Если уровень океана поднимется хотя бы на метр, около 50% площади страны будет затоплено. Природные бедствия случаются там почти каждый год, но в сентябре 1998 г. мир с ужасом наблюдал прелюдию к тому, что когда-нибудь может стать обычным явлением. Сильное наводнение затопило две трети территории страны, практически в одну ночь оставив 30 млн человек без крыши над головой. В результате одной из самых страшных природных катастроф последних лет погибло около 1000 человек, было разрушено 10 000 км дорог.
Еще одна страна, где даже небольшой подъем уровня Мирового океана вызовет настоящую катастрофу, — это Вьетнам. К середине века эта страна с населением 87 млн человек может лишиться своих основных сельскохозяйственных земель. Особенно уязвима здесь дельта реки Меконг, где выращивается половина всего вьетнамского риса и живет 17 млн человек. По данным Всемирного банка, подъем уровня океана всего на метр заставит сняться с места 11% населения Вьетнама. Плодородные почвы дельты Меконга, оказавшись под соленой водой, погибнут навсегда. Лишившись домов и земель, миллионы людей устремятся в поисках убежища в город Хошимин. Но четверть территории этого мегаполиса также окажется под водой.
В 2003 г. Пентагон заказал Global Business Network исследование, которое показало, что в худшем случае глобальное потепление может вызвать на Земле столь же глобальный хаос. Миллионы беженцев двинутся куда глаза глядят, игнорируя государственные границы; правительства потеряют всякий авторитет и рухнут; начнутся мародерство, мятежи и хаос. В этой отчаянной ситуации соседние страны, столкнувшись с угрозой вторжения миллионов отчаявшихся людей, могут прибегнуть к ядерному оружию.
«Можно представить, что Пакистан, Индия и Китай — страны, обладающие ядерным оружием, — начинают вступать в пограничные стычки из-за беженцев, пахотной земли и права пользования реками, протекающими по территории нескольких стран», — говорится в докладе. Питер Шварц (Peter Schwartz), основатель Global Business Network и основной исполнитель заказа Пентагона, раскрыл мне подробности этого сценария. Он считает, что самой горячей точкой станет граница между Индией и Бангладеш. Серьезный кризис в Бангладеш может сорвать с насиженных мест до 160 млн человек. Возникнет одна из величайших миграционных волн в истории человечества. Стремительно возрастет напряженность, границы рухнут, местные власти ничего не смогут сделать, повсюду вспыхнут массовые мятежи. Шварц считает, что некоторые страны в качестве крайней меры могут прибегнуть к ядерному оружию.
В самом худшем случае парниковый эффект может стать самоподдерживающимся. К примеру, при таянии арктической тундры могут высвободиться миллионы тонн метана из гниющих растений. Под покровом тундры, покрывающей в Северном полушарии площадь около 23 млн км2, кроется замороженная растительность еще времен последнего оледенения, закончившегося несколько тысяч лет назад. Углекислого газа и метана в ней больше, чем во всей земной атмосфере, и таяние вечной мерзлоты представляет страшную опасность для климата. Мало того, метан — еще более страшный парниковый газ, чем двуокись углерода. Он не задерживается в атмосфере надолго, зато вызывает гораздо более серьезные последствия. Высвобождение громадных запасов метана из тающей тундры может повлечь за собой стремительный подъем температуры, что, в свою очередь, вызовет дальнейшее высвобождение метана и запустит неудержимый цикл глобального потепления.
Технические решения
Ситуация отчаянная, но точки невозврата человечество еще не достигло. Контролирование выбросов парниковых газов в атмосферу — проблема в основном экономическая и политическая, а не техническая. Производство углекислого газа растет одновременно с активизацией экономики и связано, таким образом, с богатством. К примеру, США в настоящий момент производят около 25% всего углекислого газа в мире. Причина в том, что около четверти всей мировой экономической деятельности сосредоточено именно в США. Правда, в 2009 г. Китай обогнал Соединенные Штаты по выработке парниковых газов, и связано это в основном с взрывным ростом экономики этой страны. Вот основная причина того, почему развитые страны не спешат принимать меры против глобального потепления: эти меры помешают экономической деятельности и отрицательно скажутся на процветании.
Предложено немало путей борьбы с этим мировым кризисом, но уже сегодня ясно, что быстрых разовых мер, скорее всего, будет недостаточно. Проблему могут разрешить только принципиальные изменения в энергетической системе Земли и в расходовании энергии. Серьезные ученые предлагают и технические меры, но ни одно подобное предложение не встретило пока широкой поддержки. Среди предложений:
• Искусственное уменьшение прозрачности атмосферы. Одно из предложений состоит в том, чтобы запустить в верхние слои атмосферы ракеты с подходящими веществами, такими как двуокись серы, и рассеять их на большой высоте. Цель — усилить отражение солнечного света от Земли в космос и тем самым слегка охладить планету. Более того, нобелевский лауреат Пол Крутцен (Paul Crutzen) считает, что такая мера могла бы стать «последним шансом» — шагом, при помощи которого человечество в последний момент могло бы остановить глобальное потепление. Идея возникла в 1991 г., когда ученые с большим интересом наблюдали, как сильнейший вулканический взрыв горы Пинатубо на Филиппинах забросил в верхние слои атмосферы 10 млрд тонн вулканической пыли. Небеса тогда заметно потемнели, а средняя температура на земном шаре уменьшилась на 0,6 С. На основании полученных данных ученые рассчитали, сколько химикатов необходимо будет закинуть в стратосферу, чтобы снизить среднюю температуру на Земле. Это, конечно, серьезное предложение, но критики сомневаются в том, что такая мера сама по себе сможет решить наболевшую проблему. К примеру, почти ничего не известно о том, как именно повлияет на климат выброс в атмосферу громадного количества пыли. Может быть, действие его будет краткосрочным, а может, выявившиеся побочные эффекты только усилят первоначальную проблему. К примеру, после взрыва Пинатубо в мире наблюдалось довольно резкое падение количества осадков; если так произойдет и во время эксперимента, по всей Земле могут начаться засухи. Согласно оценкам, на полевые испытания этой идеи потребовалось бы 100 млн долларов. А поскольку сульфатные аэрозоли дают лишь временный эффект, на забрасывание их в больших количествах в стратосферу ежегодно уходило бы как минимум 8 млрд долларов.
• Стимулирование роста водорослей. Еще одно предложение — сбросить в океан большое количество железосодержащих веществ. Выступая в качестве минеральных удобрений, они вызовут активный рост водорослей, что, в свою очередь, увеличит количество поглощаемого ими углекислого газа. Однако когда корпорация Planktos со штаб-квартирой в Калифорнии объявила, что планирует самостоятельно начать операцию по удобрению части Южной Атлантики железом (компания надеялась таким образом искусственно вызвать цветение воды и быстрое размножение фитопланктона, который должен был активно поглощать из воздуха углекислый газ), страны, связанные Лондонской конвенцией о регулировании сбросов в океан, заявили о своей обеспокоенности, а некая группа под флагом ООН призвала к временному мораторию на подобные эксперименты. У Planktos закончились деньги, и проект был прекращен.
• Связывание углерода. Еще одна возможность — связывание углерода. Это процесс, при котором углекислый газ, выделяемый угольными станциями, переводится в жидкую форму и не допускается в окружающую среду; к примеру, его можно захоранивать под землей. Хотя в принципе такой проект мог бы сработать, связывание углерода — очень дорогой процесс, к тому же он ничего не может сделать с газом, уже выпущенным в атмосферу. Начиная с 2009 г. инженеры всего мира с интересом следят за первым серьезным испытанием этого метода. Громадная электростанция Mountaneer, построенная в 1980 г. в Западной Вирджинии, переоборудуется таким образом, чтобы не выпускать двуокись углерода в окружающую среду. Сжиженный газ планируется закачивать на глубину около 2,5 км в слой доломита. Постепенно эта жидкость образует в глубине земли массу высотой 9–12 м и длиной несколько сотен метров. Компания American Electric Power, владелец электростанции, планирует закачивать под землю по 100 000 т двуокиси углерода в течение 2–5 лет. Это всего 1,5% годового производства углекислого газа на данной электростанции, но со временем система сможет улавливать до 90% выбросов. Первоначальные затраты по проекту составят 73 млн долларов. В случае успеха эту схему можно будет быстро распространить на другие электростанции, к примеру, на четыре гигантские угольные станции суммарной мощностью 6 ГВт, расположенные неподалеку (из-за них этот район был даже прозван Мегаваттной долиной). Неизвестных здесь множество: неясно, что будет происходить со сжиженным углекислым газом дальше: будет ли он потихоньку мигрировать, не соединится ли с водой и не образует ли угольную кислоту, которая затем может отравить грунтовые воды. Однако если эксперимент пройдет успешно, этот подход может стать частью целого пакета технологий, при помощи которых человечество будет бороться с глобальным потеплением.
• Генная инженерия. Еще одно предложение сводится к тому, чтобы создать при помощи генной инженерии такие формы жизни, которые могли бы поглощать углекислый газ в больших количествах. Энтузиастом такого подхода является, к примеру, Крейг Вентер (J. Craig Venter), сделавший себе имя и состояние на том, что придуманные им высокоскоростные технологии позволили расшифровать геном человека на несколько лет раньше запланированного срока. «Мы рассматриваем геном как программу, а может, и как операционную систему клетки», — говорит он. Его цель — научиться переписывать эту программу, чтобы получить возможность генетически модифицировать или создавать практически с нуля микроорганизмы, так чтобы они поглощали углекислый газ с электростанций и перерабатывали его в полезные вещества, такие как природный газ. Он замечает: «На нашей планете уже существуют тысячи, а может, и миллионы организмов, умеющих это делать». Фокус в том, чтобы модифицировать их и таким образом увеличить выход, а также приспособить к существованию на угольных электростанциях. «Мы считаем, что у этой отрасли громадный потенциал и что она сможет заменить собой всю нефтехимическую промышленность. Не исключено, что это произойдет уже в ближайшем десятилетии», — оптимистично заявляет он.
Принстонский физик Фримен Дайсон (Freeman Dyson) выступает за другой вариант — создание генетически модифицированных деревьев, которые будут поглощать углекислый газ. Он заявил, что триллиона таких деревьев, вполне возможно, будет достаточно, чтобы надежно контролировать содержание углекислого газа в воздухе. В статье «Можем ли мы контролировать углекислый газ в атмосфере?» он выступил за создание «углеродного банка быстрорастущих деревьев», которые могли бы регулировать уровень углекислого газа.
Однако в этом случае, как и в любых планах по масштабному использованию генной инженерии, следует соблюдать осторожность и остерегаться побочных эффектов. Невозможно отозвать из природы живые существа так, как мы отзываем бракованные машины. Оказавшись в природных условиях, генетически модифицированный вид может неожиданным и незапланированным образом повлиять на другие виды животных и растений; в частности, он может вытеснить местные виды и нарушить сложившееся равновесие пищевой цепочки.
Как ни печально, политики не проявили должного интереса ко всем вышеперечисленным предложениям. Тем не менее когда-нибудь проблема глобального потепления станет настолько болезненной и взрывоопасной, что политикам придется что-то решать.
Критическими здесь, вероятно, станут следующие несколько десятилетий. К середине века человечество, по идее, перейдет на водородное топливо, а развитие термоядерной и солнечной энергетики в сочетании с возобновляемыми видами энергии позволит сделать экономику гораздо менее зависимой от потребления ископаемого топлива. Рыночные механизмы и водородные технологии дадут нам долгосрочное решение проблемы глобального потепления. Но сейчас, до наступления водородной эры, продолжается опасный период. В краткосрочной перспективе ископаемое топливо по-прежнему является самым дешевым источником энергии, а потому глобальное потепление будет грозить человечеству еще не один десяток лет.
Термоядерная энергия
К середине века на сцене появится новый игрок, способный резко изменить правила игры. Речь идет об энергии синтеза, или термоядерной энергии. К тому времени это техническое решение, по всей видимости, станет самым конкурентоспособным и, возможно, позволит решить проблему энергии навсегда. Если на атомных станциях энергия (и большое количество радиоактивных отходов) получается за счет расщепления ядер атомов урана, то термоядерный синтез основан на слиянии атомов водорода. При этом выделяется огромное количество тепла (а значит, энергии) и очень мало отходов.
В отличие от распада, синтез представляет собой имитацию процессов, протекающих в глубинах Солнца. Энергия, скрытая в глубине атомов водорода, обеспечивает существование Вселенной. Энергия синтеза зажигает Солнце и освещает небеса. В ней заключена главная тайна звезд. Всякий, кто сумеет обуздать термоядерный синтез, получит вечный источник неограниченной энергии. А топливо для термоядерных станций можно добывать из обычной морской воды. Термоядерный синтез дает в 10 млн раз больше энергии на единицу веса, чем бензин, и в обычном стакане воды содержится столько же энергии, сколько в 500 000 баррелей нефти.
Именно синтез (а не распад) использовала природа для обеспечения нашей Вселенной энергией. При образовании звезд газовый шар, богатый водородом, постепенно сжимается под действием гравитации, одновременно разогреваясь до огромных температур. Когда температура газа достигает порядка 50 млн градусов (конкретная цифра меняется в зависимости от условий), ядра водорода внутри шара, сталкиваясь между собой, начинают сливаться с образованием ядер гелия. При этом высвобождается громадное количество энергии, и газ вспыхивает. (Если говорить точнее, сжатие должно обеспечить выполнение так называемого критерия Лоусона, который требует, чтобы водород был сжат до определенной плотности при определенной температуре на определенное время. Если все три условия — плотность, температура и время — выполнены, возникает реакция ядерного синтеза. Результатом может быть водородная бомба, звезда или ядерный синтез в реакторе.)
Итак, есть ключевое условие: для высвобождения космических количеств энергии необходимо нагреть и сжать водород до определенной степени.
Но до сих пор все попытки обуздать эту космическую мощь терпели неудачу. Оказалось, что нагреть водород до десятков миллионов градусов, при которых протоны начнут объединяться в ядра гелия и выделять энергию, крайне трудно.
Более того, общество критически относится ко всем обещаниям такого рода — ведь каждые двадцать лет ученые заявляют, что через двадцать лет термоядерная энергия будет освоена. На самом же деле сейчас, после полувека сверхоптимистических обещаний, физики все больше убеждаются в том, что управляемый термояд действительно на подходе и первые экспериментальные реакторы могут быть созданы уже к 2030 г. Вполне возможно, что к середине века появятся и коммерческие станции.
Надо отметить, что общественность имеет полное право скептически относиться к термоядерному синтезу — слишком много в прошлом было хвастовства, обмана и просто неудач в этой области. В 1951 г., когда холодная война была в полном разгаре и разработка водородной бомбы шла бешеными темпами, президент Аргентины Хуан Перон объявил с большой помпой, что ученые его страны совершили прорыв и покорили энергию солнца. В средствах массовой информации поднялся страшный шум. Заявление казалось невероятным, но крупнейшие газеты мира, включая The New York Times, помещали его на первых полосах. Аргентина, хвастал Перон, совершила великое научное открытие там, где потерпели неудачу сверхдержавы. Неизвестный немецкий ученый Рональд Рихтер (Ronald Richter) убедил Перона профинансировать его «термотрон» и пообещал взамен неограниченное количество энергии и вечную славу Аргентине.
Американское научное сообщество, все еще лихорадочно работавшее над созданием водородной бомбы и мечтавшее успеть раньше русских, объявило заявление Перона чепухой. Ученый-атомщик Ральф Лэпп (Ralph Lapp) сказал тогда: «Я знаю, какой еще материал используют аргентинцы. Это чушь».
Другого ученого-атомщика, Дэвида Лилиенталя (David Lilienthal), спросили, существует ли хоть «самый крохотный шанс» на то, что аргентинцы могут оказаться правы. Он ответил: «Меньше, чем вы сказали».
Под таким давлением Перон уперся и стоял на своем; он намекал, что сверхдержавы просто завидуют Аргентине, которая сумела всех обойти. Момент истины наступил год спустя, когда представители Перона побывали в лаборатории Рихтера. Вообще, когда со всех сторон посыпались обвинения и вопросы, Рихтер повел себя странно; чем дальше, тем нелепее и беспорядочнее становились его поступки. Перед прибытием инспекторов он подорвал дверь своей лаборатории при помощи кислородных баллонов и написал на листе бумаги слова «атомная энергия». Он заказал порох и собирался поместить его в реактор. Создавалось впечатление, что ученый сошел с ума. Когда инспекторы поместили рядом со «счетчиками излучения» Рихтера кусочек радия, ничего не произошло; очевидно, его оборудование было просто подделкой. Позже Рихтер был арестован.
Но самый знаменитый случай связан с именами Стэнли Понса (Stanley Pons) и Мартина Флейшманна (Martin Fleischmann), двух известных и уважаемых химиков из Университета Юты, которые в 1989 г. объявили об открытии так называемого «холодного синтеза», т.е. реакции ядерного синтеза, протекающей при комнатной температуре. Ученые утверждали, что поместили в воду металлический палладий, который затем каким-то волшебным образом сжал атомы водорода до такой степени, что они слились и образовали гелий. Энергия солнца высвободилась практически на лабораторном столе.
Сообщение вызвало настоящий шок. Едва ли не все газеты мира поместили это открытие на первую полосу. Журналисты заговорили о конце энергетического кризиса и начале новой эры, эры неограниченной энергии. Штат Юта немедленно провел закон и выделил 5 млн долларов на создание Национального института холодного синтеза. Даже японские автопроизводители поспешили пожертвовать миллионы долларов на исследования в этой новой, но невероятно перспективной области. Вокруг холодного синтеза начали собираться последователи, мгновенно уверовавшие в него; образовалось даже что-то вроде секты.
В отличие от Рихтера, Понс и Флейшманн пользовались уважением в ученой среде и рады были поделиться своими результатами. Они предъявили оборудование и полученные данные, чтобы все желающие могли увидеть их воочию и убедиться.
Но затем ситуация осложнилась. Ученые пользовались настолько простым оборудованием, что повторить их опыт могла любая лаборатория мира. Естественно, желающих своими глазами увидеть поразительный результат хватало. Увы, большинству групп не удалось зарегистрировать какого бы то ни было выделения дополнительной энергии, и холодный синтез был объявлен тупиковым направлением. Однако забыть об этой истории тоже не удавалось, поскольку время от времени появлялись новые сообщения о том, что какие-то группы повторили эксперимент успешно.
Наконец вмешалось физическое сообщество. Физики проанализировали уравнения Понса и Флейшманна и сделали вывод, что они некорректны. Во-первых, если утверждения ученых верны и в ходе эксперимента действительно происходило то, о чем идет речь, из сосуда с водой, в котором происходил синтез, должен был вылететь обжигающий поток нейтронов. (В типичной реакции синтеза два ядра водорода сливаются в ядро гелия, выделяя при этом энергию и нейтрон.) Сам факт, что ученые остались живы, означал, что никакого ядерного синтеза в эксперименте не было; если бы он происходил, они должны были умереть от радиационных ожогов. Во-вторых, скорее всего, Понс и Флейшманн столкнулись с какой-то химической, а не термоядерной реакцией. И наконец, заключили физики, металлический палладий не в состоянии сблизить атомы водорода в достаточной степени, чтобы вызвать слияние. Это означало бы нарушение квантовой теории.
Несмотря ни на что, споры о холодном синтезе продолжаются по сей день. Время от времени появляются новые сообщения о том, что кому-то удалось получить холодный синтез. Проблема в том, что никому не удается воспроизвести такой результат надежно и по первому требованию. В конце концов, какой смысл делать автомобильный двигатель, если он будет работать от случая к случаю? Наука основывается на воспроизводимых, проверяемых и опровержимых результатах, которые можно получить в любой момент.
Горячий синтез
Надо сказать, что преимущества термоядерной энергии настолько велики, что загадка термоядерного синтеза влечет к себе ученых, как песня сирен влекла древних мореплавателей.
Так, загрязнение окружающей среды от синтеза минимально. Это относительно чистый способ получения энергии, с помощью которого природа обеспечивает энергией нашу Вселенную. Один из побочных продуктов реакции — гелий, который ко всему прочему пользуется спросом и имеет коммерческую стоимость. Другой — радиоактивная сталь камеры реактора, которую со временем надо будет захоранивать, потому что в течение нескольких десятков лет она будет представлять некоторую опасность. Но по сравнению с обычным урановым атомным энергоблоком (который каждый год производит по 30 т высокоактивных отходов, опасных на протяжении тысяч, а то и десятков миллионов лет) количество «мусора» здесь несущественно.
Кроме того, на термоядерной станции не может произойти такой катастрофы, как расплавление активной зоны. Урановые станции — именно потому, что в активной зоне у них находятся тонны высокоактивных отходов, — продолжают и после выключения реактора производить значительное количество тепла. Именно это остаточное тепловыделение может со временем расплавить и топливные стержни, и стальной корпус и привести к попаданию расплавленного топлива в грунтовые воды, взрыву и катастрофе, так красочно показанной в фильме «Китайский синдром».
Термоядерные станции по определению намного безопаснее. К примеру, если выключить магнитное поле такого реактора, горячая плазма соприкоснется со стенками камеры реактора, и процесс ядерного синтеза мгновенно прекратится. В термоядерном реакторе не может возникнуть неуправляемая цепная реакция; в случае сколько-нибудь серьезного происшествия он просто выключится.
«Даже если термоядерная электростанция будет стерта с лица земли, уровень радиации в километре от периметра окажется настолько низким, что эвакуация вообще не потребуется», — говорит Фаррох Наджмабади, руководитель Центра энергетических исследований Университета Калифорнии в Сан-Диего.
Несмотря на чудесные достоинства термоядерной энергетики, не стоит забывать об одной маленькой подробности: ее не существует на свете. Никому пока не удалось построить действующий термоядерный реактор.
Однако физики высказывают осторожный оптимизм. «Всего десять лет назад некоторые ученые сомневались в том, что можно получить управляемый термоядерный синтез хотя бы в лаборатории. Теперь мы точно знаем: синтез возможен. Вопрос в том, окажется ли он экономически выгодным», — говорит сотрудник General Atomics Дэвид Болдуин (David Е. Baldwin), курирующий один из крупнейших термоядерных реакторов в США, реактор DIII-D.
Лазерный термоядерный синтез
В ближайшие несколько лет ситуация в этой области может сильно измениться.
В последнее время ученые вели исследования одновременно по нескольким направлениям, и спустя несколько десятков лет сплошных неудач наконец настал радостный момент. Физики убеждены, что термояд вот-вот будет покорен. Во Франции с участием многих европейских стран, России, США и Японии строится Международный термоядерный экспериментальный реактор (ITER). В США тоже имеется экспериментальный реактор — National Ignition Facility (NIF).
Мне выпала возможность увидеть аппарат лазерного синтеза NIF собственными глазами, и это грандиозное зрелище. Поскольку термоядерный синтез состоит в близком родстве с водородной бомбой, реактор NIF базируется в Ливерморской национальной лаборатории имени Лоуренса, где военные разрабатывают водородные боеголовки. Чтобы попасть туда, мне пришлось пройти через многоуровневую систему охраны.
Сам реактор, когда я наконец до него добрался, произвел на меня потрясающее впечатление. Я привык видеть лазеры в университетских лабораториях (более того, непосредственно под моим кабинетом в Городском университете Нью-Йорка располагается одна из крупнейших лазерных лабораторий в штате Нью-Йорк), но NIF меня ошеломил. Сам реактор занимает десятиэтажное здание размером с три футбольных поля, где 192 гигантских лазера направляют свои лучи в длинный туннель. Это крупнейшая лазерная система в мире, по мощности она превосходит предыдущую в 60 раз.
Пройдя по длинному туннелю, лазерные лучи попадают на систему зеркал, которые фокусируют их все на крошечной, размером с булавочную головку, мишени из дейтерия и трития (два тяжелых изотопа водорода). Невероятно, но лазерные лучи суммарной мощностью 500 трлн ватт сходятся на крошечном шарике, едва видимом невооруженным глазом, и поджаривают его до температуры в 100 млн градусов (намного горячее, чем в центре Солнца). За краткий миг в этом колоссальном импульсе выделяется энергия, которую выработали бы за этот промежуток времени полмиллиона атомных энергоблоков. Поверхность микроскопического шарика быстро испаряется, и ударная волна от этого микровзрыва сжимает шарик и запускает реакцию синтеза.
Строительство NIF завершилось в 2009 г., и в настоящий момент реактор проходит испытания. Если все получится, он может стать первым аппаратом термоядерного синтеза, которому удастся выдать не меньше энергии, чем тратится на его работу. Эта машина не предназначена для производства электроэнергии, она должна лишь продемонстрировать, что лазерные лучи можно сфокусировать так, чтобы нагреть богатую водородом мишень, запустить термоядерную реакцию и получить в конечном итоге больше энергии, чем затрачено.
Я побеседовал с одним из директоров лаборатории NIF Эдвардом Мозесом (Edward Moses) о надеждах и мечтах, связанных с его детищем. Директор был в каске и походил скорее на строительного рабочего, чем на видного физика-ядерщика, заведующего крупнейшей лазерной лабораторией в мире. Он признался мне, что в прошлом было немало неудачных проектов, но уверен, что этот проект реален: он и его команда вот-вот получат результат, который станет важным достижением в науке и войдет во все учебники истории. Они первые обуздают звездную энергию на Земле в мирных целях. Разговаривая с Мозесом, понимаешь, что такие проекты, как NIF, держатся на энтузиазме и энергии ученых. Он сказал мне, что заранее предвкушает день, когда сможет пригласить президента Соединенных Штатов в свою лабораторию и объявить о новом историческом свершении.
Однако с самого начала проект NIF сопровождают неудачи. Иногда происходят и вовсе странные вещи: так, в 1999 г. заместитель руководителя NIF Майкл Кэмпбелл (Е. Michael Campbell) вынужден был уйти в отставку, поскольку приписал себе степень доктора философии в Принстоне, которой в действительности не имел. Затем начали переносить срок завершения строительства, первоначально назначенный на 2003 г. Стоимость проекта подскочила с 1 до 4 млрд долларов. Наконец в марте 2009 г., с шестилетним опозданием, объект был сдан.
Говорят, что дьявол — в мелочах. В лазерном синтезе, к примеру, все 192 лазерных луча должны упасть на поверхность крошечного шарика с величайшей точностью, только тогда испарение произойдет равномерно и шарик «схлопнется». Все лучи должны достичь мишени в крошечном интервале времени длительностью 30 триллионных долей секунды. Малейший сбой в настройке лазеров или малейшая неровность самого шарика-мишени — и все, симметрия будет нарушена и мишень взорвется наружу, в одном направлении, а не сферически вовнутрь.
Если шарик-мишень отклоняется от сферической формы более чем на 50 нм (или примерно на 150 атомов), он тоже не сможет взорваться правильно. Так что основная проблема лазерного синтеза — обеспечить точное согласование лазерных лучей и правильную форму мишени.
Европейский союз ведет работы по собственной версии лазерного синтеза. Для испытаний будет построена лаборатория High Power Laser Energy Research Facility (HiPER); предполагается, что европейский реактор будет меньше, но несколько эффективнее NIF. Строительство HiPER предполагалось начать в 2011 г.
В настоящее время надежды ученых сосредоточены на американском проекте NIF. Однако если с лазерным синтезом ничего не получится, останется еще один, даже более продвинутый вариант управляемой термоядерной реакции: солнце в бутылке.
ITER — синтез в магнитном поле
Во Франции испытывается термоядерный реактор другой конструкции. В Международном термоядерном экспериментальном реакторе (ITER) для удержания горячего водорода используются чрезвычайно мощные магнитные поля. Вместо того чтобы пытаться лазером мгновенно сжать крохотную мишень из богатого водородом вещества, ITER медленно сжимает газообразный водород при помощи магнитного поля. Внешне реактор очень напоминает гигантский пустотелый стальной бублик, дырку которого со всех сторон окружают витки магнитной катушки. Магнитное поле удерживает газообразный водород внутри бубликообразной камеры. Затем газ нагревают, пропуская через него электрический ток. Одновременное пропускание через газ электрического тока и сжатие его при помощи магнитного поля разогревает водород до температуры во много миллионов градусов.
Идея термоядерного синтеза в «магнитной бутылке» не нова, она зародилась еще в 1950-е гг. Но почему реальное применение этой технологии стало возможно только сейчас? Почему до сих пор не создано коммерческих термоядерных реакторов по этому принципу?
Проблема в том, что магнитное поле требует чрезвычайно точной и тонкой настройки, иначе опять-таки не удастся достичь ровного сжатия газа — он вырвется из магнитной ловушки или будет неравномерным по плотности. Представьте, что вы пытаетесь сжать в руках надутый воздушный шарик. Вы увидите, что шарик все время норовит вспучиться у вас между руками и что сжать его равномерно практически невозможно. Основная проблема здесь — нестабильность — относится к области скорее техники, чем физики.
Вообще, проблемы с термоядерным синтезом сперва выглядят странно — ведь звезды легко сжимают водород, об этом ясно свидетельствуют триллионы звезд нашей Вселенной. Кажется, что природа зажигает звезды в небесах без всяких усилий, так почему мы не можем сделать это на Земле? Ответ заключается в простой и понятной, но притом фундаментальной разнице между гравитацией и электромагнетизмом.
Гравитация, как показал Ньютон, только притягивает. Поэтому в звезде водород под действием этой силы равномерно сжимается и принимает форму сферы. (Именно поэтому мы видим вокруг только круглые звезды и планеты, а не кубические и не пирамидальные.) А вот электрический заряд бывает двух типов: положительный и отрицательный. Если собрать в кучку отрицательные заряды, они оттолкнутся друг от друга и разлетятся в разные стороны. Но если свести вместе положительный и отрицательный заряды, получим так называемый «диполь», электрическое поле которого имеет сложную форму, а рисунок силовых линий напоминает паутину. Магнитные поля тоже имеют дипольную структуру; поэтому равномерно сжимать горячий газ — чрезвычайно сложная задача. Строго говоря, только суперкомпьютер способен построить карту магнитного и электрического полей, возникающих вокруг какой-нибудь несложной конфигурации электронов.
Суть вот в чем. Гравитация работает только на притяжение и может сжать газ в сферу очень равномерно. Поэтому звезды возникают сами по себе. Но электромагнетизм может работать как на притяжение, так и на отталкивание, поэтому газы при сжатии выпучиваются и образуют сложные конфигурации, делая управляемый ядерный синтез необычайно сложной задачей. Именно эта фундаментальная проблема полвека сдерживала ученых.
Но теперь ситуация изменилась. Физики утверждают, что в проекте ITER решена проблема стабильности при магнитном удержании плазмы.
ITER — один из крупнейших международных научных проектов в истории человечества. Сердце машины — металлическая камера в форме бублика весом в 23 000 т (т.е. намного тяжелее Эйфелевой башни, которая весит всего 7300 т).
Детали устройства настолько тяжелы, что для их перевозки пришлось специально усиливать некоторые дороги. К месту строительства части реактора, самая тяжелая из которых весит 900 т, а самая высокая достигает высоты четырехэтажного дома, будет доставлять колонна специальных транспортных машин. Девятнадцатиэтажное здание ITER будет стоять на гигантской платформе размером с 60 футбольных полей. Проектная стоимость реактора составляет 10 млрд евро, а финансирование возьмут на себя семь государств-участников (Европейский союз, США, Китай, Индия, Япония, Корея и Россия).
Когда реактор будет наконец запущен, он будет нагревать водородную плазму до температуры в 150 млн градусов, что намного превосходит 15 млн градусов в центре Солнца. Если все пойдет хорошо, он будет вырабатывать 500 МВт, т.е. в 10 раз больше, чем потреблять. (Нынешний рекорд для термоядерной энергии — 16 МВт, которые генерирует европейский реактор Joint European Torus в Калэмском научном центре в графстве Оксфордшир, Великобритания). После некоторых задержек выход ITER «в нуль» по балансу мощности назначен на 2019 г.
ITER, как и остальные действующие и строящиеся термоядерные реакторы, — все еще научный проект. Он не предназначен для выработки электроэнергии. Однако физики уже сегодня готовят базу для следующего шага — коммерческого производства термоядерной энергии. Фаррох Наджмабади, руководитель рабочей группы по анализу различных проектов термоядерных электростанций, предлагает проект ARIES-AT — токамак размером меньше европейского ITER, который, по расчетам, должен производить 1 ГВт по цене около 5 центов за киловатт-час, что сделает его конкурентоспособным по отношению к электростанциям на ископаемом топливе. Но даже Наджмабади, большой оптимист во всем, что связано с термоядерным синтезом, признает, что всерьез выйти на рынок термоядерная энергия сможет не раньше середины века.
Еще один коммерческий проект — термоядерный реактор DEMO. Если ITER, по проекту, должен будет производить 500 МВт в течение не менее 500 с., то DEMO проектируется так, чтобы генерировать энергию непрерывно. Кроме того, в DEMO должен присутствовать один дополнительный элемент, которого нет в ITER. Дело в том, что при слиянии двух ядер водорода возникает лишний нейтрон, который затем быстро вылетает из камеры реактора. Но можно окружить камеру специальным покрытием, известным как бланкет, предназначенным исключительно для того, чтобы поглотить энергию этого нейтрона. Поглощая нейтроны, бланкет нагревается. Вода в трубах, проходящих внутри его, нагревается и закипает. Образовавшийся пар направляют в турбину, которая, в свою очередь, вращает электрогенератор.
Если все пойдет как надо, реактор DEMO будет запущен в 2033 г. Планируется, что по размерам он будет на 15% крупнее ITER, а энергии будет вырабатывать в 25 раз больше, чем потреблять. По проекту DEMO будет производить 2 ГВт энергии, что сделает его сравнимым с традиционными электростанциями. Если проект DEMO будет реализован успешно, начнется стремительное внедрение отработанной технологии.
Однако пока неясностей хватает. Проблема финансирования строительства ITER уже решена, но DEMO находится еще на стадии планирования, а значит, задержки неизбежны.
Специалисты по термоядерному синтезу уверены, что решающие ступени на пути к управляемому термояду уже пройдены. После десятков лет неоправданного оптимизма и неудач они различают впереди контуры будущих промышленных реакторов. В настоящий момент имеется не одна, а целых две разные конструкции (NIF и ITER), которые могут со временем принести энергию ядерного синтеза в каждый дом. Но пока ни тот ни другой проекты не доведены до уровня экономической целесообразности, остается место для самых разных неожиданностей, таких как холодный синтез или пузырьковый синтез.
Настольные установки для ядерного синтеза
Ставки в этой игре настолько высоки, что нельзя упускать из виду вероятности решения проблемы с совершенно иной, неожиданной стороны. Механизм ядерного синтеза хорошо известен, и существуют научные идеи, которые совершенно не укладываются в общее русло гигантских научных проектов с несметным финансированием и тем не менее имеют смысл. Некоторые из этих странных идей могут когда-нибудь принести плоды в виде настольных установок холодного ядерного синтеза.
В финальной сцене фильма «Назад в будущее» мы видим, как безумный ученый Док Браун заправляет свою машину времени — автомобиль «Делориан». Вместо того чтобы залить в бак бензин, он роется в мусорных ящиках в поисках банановых шкурок и другого мусора, а затем загружает все это в маленький контейнер под названием мистер Фьюжн (т.е. мистер Синтез).
Возможно ли, что в результате какого-нибудь неожиданного научного открытия всего через сотню лет громадные установки размером с многоэтажный дом съежатся до размера кофе-машин, как в фильме?
Один из серьезных вариантов реализации холодного синтеза носит название сонолюминесценция. Дело в том, что схлопывание пузырьков газа в жидкости приводит к возникновению чрезвычайно высоких температур. Иногда такое явление называют акустическим, или пузырьковым, синтезом. Вообще, этот любопытный эффект известен давно; еще в 1934 г. ученые Кёльнского университета экспериментировали с ультразвуком и фотопленками, надеясь ускорить процесс их проявления, и обратили внимание на крохотные точки на пленке. Точки фиксировали вспышки света, возникавшие в кавитационных пузырьках, которые ультразвук создавал в жидкости. Позже нацисты заметили, что пузыри, уходящие от винтов, часто светятся, указывая на то, что внутри их почему-то возникают высокие температуры.
Позже было установлено, что пузырьки ярко светились потому, что схлопывание происходило равномерно, и воздух внутри пузырьков, быстро сжимаясь, нагревался до необычайно высоких температур. Горячему синтезу, как мы уже видели, очень мешает недостаточно хорошая синхронизация и фокусировка лазерных лучей на мишени или неравномерное сжатие газа. А при схлопывании пузырька молекулы движутся так быстро, что давление воздуха внутри пузырька быстро выравнивается вдоль его стенки. В принципе, если схлопывание происходит в таких идеальных условиях, нельзя ли получить внутри пузырька достаточные условия для ядерного синтеза?
В экспериментах по сонолюминесценции ученым удалось получить температуры в десятки тысяч градусов. Если использовать инертные газы, можно существенно увеличить яркость света, излучаемого из пузырьков. Однако пока непонятно, может ли в этих условиях быть достигнута температура, достаточно высокая для ядерного синтеза. Масла в огонь подлила статья Рузи Талейархана (Rusi Taleyarkhan), работавшего прежде в Национальной лаборатории Окридж, который заявил в 2002 г., что получил реакцию ядерного синтеза на своей ультразвуковой установке. Он утверждал, что зарегистрировал в ходе эксперимента нейтроны — верный признак ядерного синтеза. Однако за несколько лет другим исследователям не удалось повторить его работу, поэтому результат Талейархана на данный момент считается недостоверным.
Еще одна темная лошадка — установка Фило Фарнсуорта (Philo Farnsworth), непризнанного соизобретателя телевидения. Еще ребенком Фарнсуорт придумал телевизор, наблюдая, как фермер распахивает свое поле, ряд за рядом, из стороны в сторону. В возрасте 14 лет он даже зарисовал детали своего изобретения — и он же первым воплотил идею в полностью электронное устройство, способное выводить на экран движущееся изображение. К несчастью, Фарнсуорту не довелось насладиться плодами своего эпохального изобретения, все его претензии потонули в бесконечных путаных патентных тяжбах с корпорацией RCA. Юридические баталии буквально свели изобретателя с ума, и кончилось тем, что он добровольно лег на лечение в психиатрическую больницу. Его новаторские работы в области телевидения в значительной степени остались незамеченными.
Много позже Фарнсуорт переключил свое внимание на фьюзор — небольшое настольное устройство, способное генерировать нейтроны путем ядерного синтеза. Прибор состоит из двух больших сфер из проволочной сетки, одна из которых располагается внутри другой. Внешняя сфера заряжена положительно, внутренняя — отрицательно, так что вводимые внутрь протоны отталкиваются от внешней сетки и притягиваются к внутренней. Затем протоны бомбардируют богатую водородом мишень в центре сфер, порождая реакцию синтеза и выброс нейтронов.
Конструкция фьюзора настолько проста, что даже старшекласснику под силу сделать то, чего не смогли добиться Рихтер, Понс и Флейшманн: получить поток нейтронов в результате ядерного синтеза. Однако маловероятно, что при помощи такого устройства можно будет когда-нибудь получать энергию. Число ускоряемых в нем протонов чрезвычайно мало, так что и полученная энергия будет минимальной.
Вообще говоря, реакцию ядерного синтеза можно получить на небольшой установке с использованием стандартного ускорителя атомов или частиц. Ускоритель атомов — более сложное устройство, чем фьюзор, но с его помощью тоже можно разгонять протоны и направлять их в богатую водородом мишень, вызывая реакцию синтеза. Но опять же число протонов при этом совсем невелико, и практического выхода энергии добиться невозможно. Вывод прост: при помощи фьюзора или атомного ускорителя можно провести реакцию ядерного синтеза, но эти устройства слишком неэффективны, чтобы служить источниками дешевой энергии.
Но вспомним: ставки в игре невероятно высоки. Несомненно, у каждого предприимчивого ученого или инженера будет шанс превратить собранное в подвале на коленке устройство в очередное мегаизобретение.