А мы точно знаем, что бозон Хиггса существует?
Предсказать существование бозона Хиггса – это одно, а вот зарегистрировать его экспериментально – это совсем другое. В 2010 году начались работы на Большом адронном коллайдере – это ускоритель с окружностью в 27 километров, расположенный в Швейцарии и Франции, в котором протоны разгоняются до скоростей в 99,999996 % скорости света и сталкиваются друг с дружкой. Для сравнения: замедление времени при подобных скоростях так велико, что, если верить ученым, внутренние часы протонов отсчитывают всего лишь около секунды за каждый час.
Большой адронный коллайдер – это один из крупнейших совместных научных проектов за всю историю науки: в нем участвуют буквально тысячи физиков, а начальные вложения составили примерно четыре миллиарда долларов.
Само собой, Большой адронный коллайдер строили не только для того, чтобы зарегистрировать бозон Хиггса. Остается надежда, что мы еще обнаружим неуловимую частицу темного вещества или откроем суперсимметрию, лежащую в основе стандартной модели физики. На свете полным-полно высокоэнергичных явлений, наблюдать которые у нас раньше не было возможности. Однако главным призом оставался бозон Хиггса.
Когда протоны разгоняются настолько близко к скорости света, как в Большом адронном коллайдере, и врезаются друг в друга, это причиняет им большие разрушения. В итоге возникает смерч, в котором создается множество высокоэнергичных частиц, в том числе, так уж получилось, и бозон Хиггса. Зарегистрировать бозон Хиггса как таковой крайне трудно. Это ведь нейтральная частица, а следовательно, ничего не излучает. Возможно, это для вас некоторая неожиданность. Когда в газетах объявляют, что на Большом адронном коллайдере или в ходе какого-то другого эксперимента была зарегистрирована та или иная частица, это зачастую означает совсем не то, что вы думаете. В ходе эксперимента ученым не приходится класть бозон Хиггса в чашку Петри или даже наблюдать его траекторию в пузырьковой камере. Нет, бозон Хиггса регистрируют, если замечают, что два высокоэнергичных гамма-луча исходят из одной точки, после чего вычисляют массу и траекторию частицы по законам сохранения импульса и энергии.
В июле 2012 года представители рабочих групп, проводивших два эксперимента – на так называемом аппарате ATLAS (A Toroidal LHC Apparatus) и на Компактном мюонном соленоиде (CMS) – объявили, что открыли бозон Хиггса, и это стало одним из важнейших открытий в физике частиц за последние 50 лет. Было обнаружено, что бозон Хиггса имеет массу примерно в 133 раза больше массы протона.
Тут мои адвокаты настаивают, чтобы я сказал вам, что новая частица, судя по всему, обладает всеми качествами бозона Хиггса, однако для того, чтобы мы могли недвусмысленно заявить, что это именно бозон Хиггса, нужно проделать большую работу. Например, мы знаем, что открытая частица обладает либо спином-0 (и тогда это Хиггс!), либо спином-2, и отмахнуться от этого невозможно. Мы знаем, что он обладает массой, сопоставимой с массой частиц W и Z0, и для нас это не сюрприз, учитывая, чем бозон Хиггса, в сущности, занимается. В результате, хотя мы и не полностью убеждены в этом, большинство физиков воспринимает как данность, что мы видим именно бозон Хиггса.
После этого открытия в популярной прессе начался настоящий бум. Заголовок в «New York Times» гласил: «Физики обнаружили неуловимую частицу, которую считают ключом к тайнам вселенной». Практически во всех журнальных и газетных статьях бозон Хиггса называли «частицей Бога». Авторы благоговейным тоном сообщали, что вот-вот мы достигнем конца физики и теперь наконец-то понимаем природу вещества. Притащите на тематическую вечеринку новенького «Тысячелетнего Сокола» в «родной» упаковке – получите ту же реакцию.
И хотя открытие бозона Хиггса – это и правда огромная сенсация, выяснилось, что наличие этой частицы объясняет существование на удивление небольшой доли массы, которая окружает нас в повседневной жизни.