Белые карлики, нейтронные звезды и вырождение
Принцип запрета обеспечивает наше существование от и до. Знаменитый афоризм Карла Сагана гласит, что вы состоите из «звездного вещества». Казалось бы, к звездам принцип запрета Паули не должен иметь особого отношения, поскольку он вступает в силу лишь тогда, когда возникает опасность перекрывания двух частиц (физики называют это эмоционально окрашенным словом «вырождение»). А в случае звезд это обычно не играет особой роли, поскольку существование звезд вполне обеспечивают высокие температуры в их ядрах, которые создают давление.
Звезды – это вселенские лаборатории, в которых создаются сложные атомы, из которых состоите вы. Большой взрыв произвел кучу простого вещества – в основном водорода и гелия, – но чтобы получить более тяжелые элементы, необходимы звезды. Наше Солнце создает из водорода гелий. В отдаленном будущем водород у него кончится, и оно будет вынуждено довольствоваться более скромной атомной диетой – создавать из гелия кислород и углерод. Однако в конце концов у него вообще кончится атомное топливо, и оно начнет схлопываться под собственным весом. После этого Солнце более или менее вечно будет тлеть в виде белого карлика. Не волнуйтесь, у нас есть еще примерно пять миллиардов лет.
Став белым карликом, Солнце столкнется с принципом запрета Паули лоб в лоб. Когда у Солнца кончится топливо, оно примется остывать. А когда оно примется остывать, то будет уменьшаться, в точности как воздушный шар, надутый горячим воздухом. Вот тут-то и начнутся странности. Солнце будет схлопываться и съеживаться и в конце концов станет размером примерно с Землю, зато его гравитация будет все сильнее и сильнее.
Но в этот момент на сцену выходит принцип Паули. Не забывайте, что кругом летают электроны, а когда Солнце схлопнется, эти электроны окажутся упакованы плотнее прежнего. Гораздо плотнее. Фундаментальные физические законы вселенной благодаря симметрии замещения тождественных частиц не дают двум электронам перекрываться. Схлопывание забуксует и прекратится, а дальше – буквально – вся конструкция окажется во власти неопределенности.
Единственная причина, по которой электроны не могут упаковываться так тесно, что начнут перекрываться, состоит в том, что это частицы со спином-½, а мы живем во вселенной, которой свойственна симметрия замещения тождественных частиц.
Вырождение говорит нам не только о том, какая участь нас ждет, но и о нашем происхождении. Я уже упоминал, что наша звезда создает гелий, водород и углерод. Несколько более массивные звезды способны порождать и более тяжелые элементы – неон, магний, кремний и железо. Однако и на Земле, и вообще повсюду полным-полно вещества, которое состоит из других элементов.
Откуда взялось все остальное?
Чтобы получить ответ на этот вопрос, нам придется рассмотреть самые массивные звезды. С какого бы огромного-преогромного ядерного бензобака все ни начиналось, в конце концов у любой звезды кончается топливо. Более того, хотя у самых тяжелых звезд больше водорода для сжигания, чем у Солнца, горят они существенно жарче – и гораздо ярче. В результате жизнь у этих звездных тяжеловесов короткая и бурная, и умирают они молодыми.
Самые массивные звезды сжигают все свои запасы, и в результате у них остается только железо. И точка. Сколько ни сжимай железо, для того, чтобы сделать из него что-то еще более тяжелое, нужно больше энергии, чем получается в процессе. Вот почему для расщепления атома требуется уран, плутоний или что-то в этом роде, то есть элементы много тяжелее железа. Раздираешь их и получаешь энергию. А бедненькое одинокое железо идет на свалку ядерной вселенной.
Без выгорания ядер у самых тяжелых звезд не хватит давления, чтобы поддерживать их существования. Однако и давления от вырождения электронов самым массивным звездам, в отличие от Солнца, недостаточно. Подобные звезды располагают огромными запасами энергии гравитации и с ее помощью лепят из протонов и электронов нейтроны.
Я заговорил о нейтронах, поскольку у неопределенности есть одна странная особенность. До того, как вступит в силу принцип запрета Паули, более тяжелые частицы можно стиснуть сильнее, чем более легкие. Масса нейтрона примерно в 2000 раз больше массы электрона, поэтому свежесформированные нейтронные звезды могут схлопнуться до размеров примерно в 2000 раз меньше, чем белый карлик той же массы. Казалось бы, слова «нейтронная звезда» звучат не так уж страшно, однако держитесь от них подальше. Масса нейтронных звезд в два-три раза больше массы Солнца, а радиус у них всего около пяти километров. По сравнению с обычной звездой сущие крохотульки.
А теперь представьте себе, что у вас есть необычайно жесткое звездное ядро, которое больше уже невозможно сжимать, и оно занимает совсем крошечное пространство. Все вещество внешних оболочек такой звезды вдруг обнаруживает, точь-в-точь как персонаж диснеевского мультика, что пол ушел у него из-под ног. Этот газ, который составляет существенную часть массы звезды, начинает падать – и к тому моменту, когда он ударяется о ядро, он летит со скоростью, очень близкой к скоростью света.
А потом отскакивает.
И налетает на остальное вещество, которое еще не упало на звезду, и получается чудовищный взрыв, который видно из соседних галактик. Это и называется сверхновая, как вы, возможно, знаете.
Сверхновые тоже вносят важный вклад в саму возможность нашего существования. Во-первых, они вбрасывают в галактику энергию и кое-какие относительно легкие элементы – углерод, азот, кислород, железо и т. д. Эти элементы входят в число самых распространенных, и если вы отрежете себе руку и сунете ее в масс-спектрометр, то обнаружите, что состоите в основном из ошметков звезд.
Однако некоторые самые тяжелые элементы вообще не могут создаваться в звездах. Мы уже убедились, что звезда способна создавать лишь элементы легче железа, и при этом вырабатывать энергию, а все, что тяжелее, наоборот, требует больших вложений энергии. В результате все, что тяжелее железа, приходится делать каким-то иным способом, и этот иной способ – взрывы сверхновых. Никель, медь, золото и даже (личный суперменский) криптон – вот лишь некоторые из множества элементов, создать которые без взрывов сверхновых было бы энергетически невозможно.
Мы с вами – результат подобного катаклизма, а скорее двух-трех подобных катаклизмов. Оглядитесь вокруг – и вы увидите мир, полный тяжелых металлов. Из одних мы делаем орудия труда, а из других состоим сами.