Упорные арьергардные бои, которые Эйнштейн вел против наступающей со всех сторон квантовой механики, достигли наибольшего напряжения в Брюсселе, во время двух знаменитых Сольвеевских конгрессов. В обоих случаях Эйнштейн выступал как провокатор, пытаясь нащупать брешь в торжествующей победу новой премудрости.
На первом из них, состоявшемся в октябре 1927 года, присутствовали три великих мастера, стоявших у истоков новой эры в физике, но теперь скептически настроенных по отношению к ее детищу – таинственному миру квантовой механики. Там были семидесятичетырехлетний Хендрик Лоренц, шестидесятидевятилетний Макс Планк и сорокавосьмилетний Альберт Эйнштейн. Хендрику Лоренцу, получившему Нобелевскую премию за исследования электромагнитного излучения, оставалось жить всего несколько месяцев. Макс Планк был обладателем Нобелевской премии за теорию кванта, а Эйнштейн – за открытие закона фотоэлектрического эффекта.
Среди остальных двадцати шести участников конгресса больше половины тоже в свое время стали лауреатами Нобелевской премии. Здесь же были и все чудо-мальчики новой квантовой механики, надевшиеся либо переубедить, либо победить Эйнштейна. Это были двадцатипятилетний Вернер Гейзенберг, двадцатипятилетний Поль Дирак, двадцатисемилетний Вольфганг Паули, тридцатипятилетний Луи де Бройль и представитель Америки тридцатипятилетний Артур Комптон. Был и представитель среднего поколения сорокалетний Эрвин Шредингер, зажатый между “сердитыми молодыми людьми” и стариками-скептиками. И конечно, здесь был сорокадвухлетний Нильс Бор, в прошлом “сердитый молодой человек”, который своей моделью атома способствовавший появлению квантовой механики, а теперь стойкий защитник вступающих в противоречие с интуицией следствий из этой теории25.
Лоренц попросил Эйнштейна сделать на конгрессе доклад о состоянии дел в квантовой механике. Эйнштейн сначала дал согласие, но потом отказался. “После длительных колебаний я пришел к выводу, что недостаточно подхожу для того, чтобы представить доклад, отражающий текущее положение дел, – ответил он. – Отчасти это связано с тем, что я не одобряю чисто статистический способ рассуждений, на котором основываются новые теории”. А затем он с горечью добавил: “Прошу вас, не сердитесь на меня”26.
Вместо него доклад, открывший конгресс, сделал Бор. Он не скупился на похвалу, описывая достижения квантовой механики. В субатомном мире нет определенности и строго выполняющегося принципа причинности, говорил он. Нет детерминистских законов, только вероятности и шанс. Не имеет смысла говорить о “реальности”, не зависящей от процесса наблюдения и измерения. В зависимости от характера ставящегося эксперимента свет может быть либо волнами, либо частицами.
Во время официальных заседаний Эйнштейн говорил очень мало. “Я должен извиниться, что не разобрался в квантовой механике достаточно глубоко”, – заметил он в самом начале. Но за обедом и во время долгих вечерних разговоров, возобновлявшихся за завтраком, он втягивал Бора и его сторонников в оживленные споры, затравкой для которых служила его любимая шутка о Боге, который не играет в кости. “Нельзя строить теории на основании большого числа всяческих “если”, – вспоминает Паули доводы Эйнштейна. – Это глубоко неправильно, даже если основывается на опыте и логически непротиворечиво”27.
“Вскоре дискуссия свелась к поединку между Эйнштейном и Бором, споривших о том, можно ли атомную теорию в ее нынешнем виде считать окончательной”, – вспоминал Гейзенберг28. Как сказал впоследствии Эренфест своим студентам, “о, это было восхитительно”29.
И во время заседаний, и в пылу неформальных дискуссий Эйнштейн пытался обработать своих противников, ставя искусные мысленные эксперименты, которые должны были доказать, что квантовая механика не дает полного описания реальности. С помощью хитроумного воображаемого устройства он пытался показать, что все характеристики движущейся частицы могут, по крайней мере в принципе, быть точно измерены.
Например, один из мысленных экспериментов Эйнштейна состоял в следующем. Пучок электронов пускают на экран со щелью. Пройдя через щель, электроны ударяются о фотографическую пластину, и их координаты фиксируются. Было еще много дополнительных элементов воображаемого прибора, таких, например, как задвижка, которая позволяла мгновенно открывать и закрывать щель. Все они были изобретательно использованы Эйнштейном, который хотел продемонстрировать, что теоретически можно одновременно знать точно координату и импульс электрона.
“Эйнштейн являлся на завтрак с каким-нибудь подобным предложением”, – вспоминал Гейзенберг. Происки Эйнштейна его, как и Паули, волновали не слишком. “Все будет в порядке, – твердили они, – все будет в порядке”. Но Бор часто приходил в возбуждение и начинал что-то исступленно бормотать.
Обычно в зал, где проходило заседание конгресса, они шли вместе, разрабатывая по пути стратегию, с помощью которой можно было бы показать несостоятельность идей Эйнштейна. “К обеду мы обычно уже могли доказать, что его мысленный эксперимент не противоречит принципу неопределенности, – вспоминал Гейзенберг, – и Эйнштейн признавал поражение. Но на следующее утро он появлялся за завтраком с новым, обычно более сложным мысленным экспериментом”. К обеду они уже знали, как опровергнуть и его.
Так это и продолжалось. Бору удалось отбить каждый мяч, посланный Эйнштейном, и показать, как принцип неопределенности в каждый момент времени действительно ограничивает доступную нам информацию о движущемся электроне. “Так продолжалось несколько дней, – рассказывает Гейзенберг. – И под конец мы – Бор, Паули и я – знали, что у нас под ногами твердая почва”30.
“Эйнштейн, мне стыдно за вас”, – ворчал Эренфест. Он был огорчен из-за того, что в отношении квантовой механики Эйнштейн проявляет ту же неуступчивость, что когда-то физики-охранители в отношении теории относительности. “К Бору он сейчас относится точно так же, как воинствующие защитники одновременности относились к нему самому”31.
Замечание, сделанное Эйнштейном в последний день конгресса, показывает, что принцип неопределенности был не единственным заботящим его аспектом квантовой механики. Его также волновало – и чем дальше, тем больше, – что квантовая механика, возможно, допускает действие на расстоянии. Другими словами, согласно копенгагенской интерпретации, нечто происшедшее с одним телом мгновенно определяет результат измерения свойств другого тела, расположенного в совершенно другом месте. Согласно теории относительности, пространственно разделенные частицы независимы. Если действие, произведенное над одним телом, немедленно влияет на другое тело, расположенное в отдалении от него, отметил Эйнштейн, “с моей точки зрения, это противоречит постулату теории относительности”. Никакая сила, включая гравитационную, не может передаваться со скоростью, превышающей скорость света, настаивал он32.
Может, Эйнштейн и проиграл спор, но он, как и прежде, оставался звездой конгресса. Де Бройль, мечтавший о встрече с ним, увидел Эйнштейна первый раз и не был разочарован. “Меня особенно поразило спокойное, задумчивое выражение его лица, общая доброжелательность, простота и дружелюбие”, – вспоминал он.
Этим двоим поладить было легко, поскольку де Бройль, как и Эйнштейн, пытался понять, можно ли как-то спасти причинность и достоверность классической физики. В то время он работал над так называемой теорией двойного решения, которая, как он надеялся, позволит обосновать волновую механику с точки зрения классической физики.
“Школа индетерминистов, главные адепты которой были молоды и бескомпромиссны, встретила мою теорию с холодным неодобрением”, – вспоминал де Бройль. Эйнштейн же, наоборот, одобрительно отнесся к его усилиям. Возвращаясь в Берлин, до Парижа Эйнштейн ехал одним поездом с де Бройлем.
Прощальный разговор состоялся на платформе Северного вокзала. Эйнштейн сказал де Бройлю, что все научные теории, если оставить в стороне их математическое выражение, должны допускать такое простое изложение, “чтобы даже ребенок мог их понять”. А что может быть столь же непросто, продолжал Эйнштейн, как чисто статистическая интерпретация волновой механики! “Продолжайте, – напутствовал он де Бройля, расставаясь на станции. – Вы на правильном пути!”
Но это было не так. К 1928 году был достигнут консенсус в мнении, что квантовая механика правильна, де Бройль сдался и присоединился к большинству. “Эйнштейн, однако, не сложил оружие и продолжал настаивать, что чисто статистическая интерпретация волновой механики не может быть полной”, – с глубоким уважением вспоминал де Бройль годы спустя33.
Действительно, Эйнштейн оставался упрямой белой вороной. “Я восхищен достижениями нового поколения молодых физиков, известными как квантовая механика, и я верю, что во многом эта теория истинна, – сказал он в 1929 году, когда сам Планк вручал ему медаль своего имени. – Но (это “но” всегда присутствовало, когда Эйнштейн выступал в поддержку квантовой механики) я верю, что ограничения, накладываемые статистическими законами, будут сняты”34.
Так была подготовлена сцена для еще более драматического, решающего сольвеевского поединка между Эйнштейном и Бором. Он состоялся на конгрессе, проходившем в октябре 1930 года. В теоретической физике столь увлекательные сражения случаются редко.
В этот раз, пытаясь поставить в тупик группу Бора – Гейзенберга и сохранить достоверность механики, Эйнштейн придумал еще более изощренный мысленный эксперимент. Как уже упоминалось, принцип неопределенности утверждает, что существует компромисс между возможностью точного измерения координаты частицы и точного измерения ее импульса. Кроме того, согласно тому же принципу неопределенность свойственна и процессу одновременного измерения энергии системы и времени, в течение которого происходит исследуемый процесс.
В мысленный эксперимент Эйнштейна входил ящик с излучением, снабженный затвором. Затвор открывается и закрывается так быстро, что за один цикл может вылететь только один фотон. Затвор контролируется точными часами. Ящик взвешивают и получают точное значение его веса. Затем в строго определенный момент времени затвор открывается, и вылетает один фотон. Ящик взвешивают снова. Связь между энергией и массой (помните, E = mc2) позволяет точно определить энергию. А зная показания часов, мы знаем точное время вылета фотона. Вот так-то!
Конечно, на самом деле есть ограничения, не позволяющие реально поставить такой эксперимент. Но теоретически он возможен и, следовательно, опровергает принцип неопределенности.
Брошенный вызов потряс Бора. “Он метался от одного к другому, пытаясь уговорить всех, что такого быть не может, что если Эйнштейн прав, значит, физике пришел конец, – записал один из участников конгресса. – Но опровержения он придумать не мог. Я никогда не забуду вид этих двух противников, выходящих из университетского клуба. Величественная фигура Эйнштейна, идущего спокойно, чуть улыбаясь иронически, и семенящего рядом с ним, ужасно огорченного Бора”35. (См. фотографию на с. 424.)
По иронии судьбы в этом научном споре после бессонной ночи Бору удалось заманить Эйнштейна в расставленную им же самим ловушку. В этом мысленном эксперименте Эйнштейн не принял в расчет свое собственное величайшее открытие – теорию относительности. Согласно этой теории в сильном гравитационном поле часы идут медленнее, чем при более слабой гравитации. Эйнштейн об этом забыл, но Бор помнил. При испускании фотона масса ящика уменьшается. Ящик находится в гравитационном поле земли. Чтобы его можно было взвесить, ящик подвешен на пружинке со шкалой. После вылета фотона он несколько поднимается, и именно этот небольшой подъем обеспечивает неприкосновенность принципа неопределенности для энергии и времени.
“Главным здесь был учет связи между скоростью хода часов и их положением в гравитационном поле”, – вспоминал Бор. Отдавая должное Эйнштейну, он любезно помог ему выполнить вычисления, которые и принесли в этом раунде победу принципу неопределенности. Но окончательно переубедить Эйнштейна не удавалось никому и никогда. Даже год спустя он все еще продолжал перебирать различные варианты подобных мысленных экспериментов36.
Кончилось все следующим: квантовая механика доказала, что как теория она вполне успешна, а Эйнштейн впоследствии пришел к тому, что можно назвать его собственным толкованием неопределенности. Он уже говорил о квантовой механике не как о неправильной теории, а только как о неполной. В 1931 году он номинировал Гейзенберга и Шредингера на Нобелевскую премию. (Гейзенберг был удостоен премии в 1932 году, а Шредингер – одновременно с Дираком – в 1933 году.) Предлагая их кандидатуры, Эйнштейн написал: “Я убежден, что эта теория, несомненно, содержит часть истины в последней инстанции”
Часть истины в последней инстанции. Эйнштейн все еще полагал, что есть еще нечто за реальностью, определяемой копенгагенской интерпретацией квантовой механики.
Ее недостаток в том, что она “не претендует на описание физической реальности, а только на определение вероятности осуществления физической реальности, которую мы наблюдаем”. Так в том же году писал Эйнштейн в статье в честь Джеймса Клерка Максвелла, великого мастера столь любимого им теоретико-полевого подхода к физике. Он закончил ее, заявив во всеуслышание о своем кредо реалиста – откровенном отрицании утверждений Бора, что физика имеет отношение не к природе как таковой, а только к тому, “что мы можем сказать о природе”. Услышав такое Юм, Мах, да, возможно, и сам Эйнштейн, когда был моложе, подняли бы в удивлении брови. Но теперь он провозглашал: “Вера во внешний мир, не зависящий от воспринимающего его субъекта, является основой всех естественных наук”37.